Bifurcations leading to stochasticity in a cyclotron-maser system
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This paper is concerned with the orbital dynamics of electrons in a cyclotron maser [C. Chen, Phys.
Rev. A 46, 6654 (1992)] with modulated maser fields. Amplitude modulation is a natural result of
wave—particle energy exchanges, and for typical system parameters, the nonlinear bifurcations of
periodic orbits are investigated as the modulation Jevel increases. Attention is focused on primary
stable orbits exhibiting the same periodicity as the modulation for Jow modulational levels. This
interest is related to the fact that the destruction of these orbits is generally associated with
considerable spread of chaos over the phase space. It is found that two groups of such orbits do
exist, each group located in a particular region of the phase space. As the modulation level grows,
the overall behavior can be classified as a function of the modulation frequency. If this frequency is
large there are two orbits in the group; one undergoes an infinite cascade of period doubling
bifurcations and the other simply collapses with neighboring unstable orbits. If the frequency is
small the number of orbits is larger; the collapsing orbit is still present and some of the others may

fail to undergo the period doubling cascade. © 1994 American Institute of Physics.

I. INTRODUCTION

There has been a growing interest in the study of sto-
chastic relativistic interactions involving magnetized elec-
trons and electromagnetic waves.

This is so because relativistic particles are likely to ab-
sorb large quantities of electromagnetic energy when the
wave—particle interaction is chaotic.

It is relatively easy to generate chaotic orbits for this
type of system. Indeed, by considering a stationary and ho-
mogeneous background magnetic field, it is generally shown
that there exists a critical wave amplitude above which most
of the particle phase-space becomes chaotic.! One noticeable
case, however, does not follow this general rule: when the
wave is circularly polarized and propagates parallel to the
magnetic field, the dynamics can be shown to be exactly
integrable. This kind of configuration, known as the cyclo-
tron resonance maser accelerator (CRMA), is presently rec-
ognized as of importance both for laboratory and astrophysi-
cal beam studies.?

It has been shown® that if the initial particle energies in a
CRMA are small enough, these particles are rapidly bunched
(in gyrophase) and subsequently accelerated to very large
energies. On the other hand, if the initial energies are not
small enough, phase bunching is absent and the average ac-
celeration is very small.* Considering these facts, one could
say that unless the beam is carefully set at small initial en-
ergies, the global accelerating process tends to be ineffective.

Given that regular acceleration may not be always domi-
nant in a CRMA, an issue to be addressed would be the
possibility of deterministic stochastic acceleration. This
could be the governing accelerating mechanism when beam
control is poor or even absent. Such is the case of astrophysi-
cal beams in pulsar magnetospheres, for instance, where we
point out that the usual wave—particle model is identical to
the one we shall making use of.> The analysis is also relevant
for laboratory schemes where the accelerating length is long
enough such that the effect of long-range inhomogeneities
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cannot be discarded.® The problem with stochastic processes,
as mentioned before, is that constant amplitude modes gen-
erate only regular trajectories. One should note, however,
that amplitude modulations may easily develop in this kind
of system because of various factors. Among these, at least
three can be considered as of relevance: (i) Low-energy par-
ticles, even if in small number, interact with the wave and
cause pump depletion, so that higher-energy particles will
view the resulting wave as a modulated train.* (ii) Electro-
magnetic waves are unstable and can frequently develop
nonlinear amplitude self-modulations.’ (ii1) Slow modula-
tions on the wave can also be produced in laboratories by
slowly varying control parameters in an experiment.®

It shall be shown that amplitude modulations, no matter
their precise origin, may indeed be responsible for the devel-
opment of bifurcations and stochastization of periodic orbits
in cyclotron-maser systems.

Attention is focused on primary resonances generating
trajectories with the same period as the modulation when the
modulational amplitudes are small. This is done because this
kind of trajectories tends to be the most stable present in the
system, a feature leading to the conclusion that the respective
orbital destabilization may be connected with global spread
of chaos throughout the phase space.” It shall be seen that
two groups of orbits with these kind of characteristics are
present for typical system parameters, each group located
around a particular point of the phase space. One orbit of
each group is a fixed point of the unperturbed dynamics, and
when a small modulation is turned on, it acquires the same
periodicity of the modulation, i.e., the modulation removes
the corresponding orbital degeneracy. The other orbits turn
out to be legitimate periodic orbits. It shall be found conve-
nient to classify the overall behavior as a function of the
modulation frequency. When this frequency is comparable to
the fixed point gyrofrequency of one group, this group is, in
fact, constituted only by two orbits. The orbit initially pre-
senting degeneracy ceases to exist as it collapses with a
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neighboring unstable periodic orbit; the other undergoes an
infinite cascade of period doubling bifurcations. When the
frequency is relatively small, the group contains more than
two trajectories. The collapsing orbit behaves similarly as in
the previous case. However, before it vanishes, it goes tem-
porarily unstable within a band of the modulation ampli-
tudes. Some of the others fail to undergo the period doubling
sequence, a feature inhibiting global spread of chaos.

It should be remarked that the appropriate resonance
analysis involves the calculation of particle gyrofrequencies.
These gyrofrequencies should be fully renormalized by the
presence of the large-amplitude maser modes, and as shall be
seen, the calculations are made accordingly.

The paper is organized as follows. In Sec. II, one intro-
duces the model, analyzes the regular motion generated by
constant amplitude modes, and calculates the renormalized
gyrofrequencies; in Sec. Ill, one numerically investigates the
sequence of bifurcations for orbits presenting the same peri-
odicity as the modulation for small modulational levels; and
in Sec. 1V, the work is concluded.

Il. THE MODEL AND ITS REGULAR DYNAMICS

One starts by introducing the Hamiltonian of a test par-
ticle submitted to the combined action of a constant guiding
magnetic field B, and an intense electromagnetic mode. Both
the guide field and the wave vector of the fluctuating field are
assumed to be aligned with the z axis of the chosen reference
frame. The vector potential of the wave, A, is written as

;n%)_' A= — yp(t)[cos(kz— wt)X—sin(kz—wt)y], (1)

where p(1)=p[1+¢€cos(Qcat)] (1), with Q4 as the
modulation frequency, is now dependent on time. The elec-

tron charge is denoted by e, m is its mass, ¢ is the velocity of
light, w is the wave frequency, and k= w/c. The test particle
Hamiltonian is adimensionally written as

FH=mc1+[ P+ Jp cos(kz— wt) ]2+ [P,+x
—Jp sin(kz— wt)]?+ P2}12, ()
which can be cast in the guiding-center resonant form

H=— oI+ \1+20+(OD*+22pl cos p+p,  (3)

if one: (i) defines w,=eBy/me and d@=w/w,,; (ii) normal-
izes t—wgt, r—{w.Jc)r, P—Plmc, F— H#imc? (iii) intro-
duces  canonical  guiding-center  coordinates P,
= 2/ cos ¢ and x + Py = V21 sin &; (iv) performs the
time removal caponical transformation [—1, #—of+#,
¢+a{z—t)—¢, and (v) finally introduces the adimensional
modulation frequency as Q=0 4/ w,, setting P,—0.

One now looks at the dynamics when p=p,=const.

For this exactly integrable case, where the Hamiltonian
is a conserved quantityy, Eq. (3) becomes
Fg=H1,$,p=pg)=E and we can introduce an action
variable J, according to

1
I=5e 3§I(E,¢)d¢. @)

Then, on inserting I(E,¢) from Eq. (3) into Eq. (4) and
inverting the resulting expression, one obtains

Fo()= P o] 5
#o(J)=a cos Rkl Y ()
where

2\3+3p2+87+ 6 2 +4J20°
= : X

(2/8%) —(18/86)+ (9po /&) —(30J/6)— 186 — 18p,J d—48J26— 163 &*

= — I+ V(GI2+ 1 +1+22pgl+ (2y2pg— V1)2>0.

()

In what follows & shall be chosen & = 1/V1+p,,
which corresponds to the autoresonance regime.’ The physi-
cal solutions correspond to the two classes of orbits shown in

b=arccos 2(3+3p0+8J+c?f2+4J'2 2)3/2 ’
[
e=0 2_ﬂ- 4_7r (F0) min
3 3 s 3 »
and

1

d=2Jo— —.
@

Variable ¢ takes three distinct values, but only the first and
third ones have physical meaning. The second generates
negative numerical values of . #; which can not correspond
to any physically possible dynamical branch because the
Hamiltonian is always positive, as can be seen if one writes
Eq. (3) (for the most dangerous case cos ¢=-~1) in the
equivalent form
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Fig. 1, The value of py is taken equal to one here and further
on, since we are considering intense eleciromagnetic modes.
Each class revolves around its own unperturbed central fixed
point which shall be called CFP.., with CFP,=CFP(c=0)
and CFP_=CFP(c=4w/3). The coordinates of CFP.,
(¢ .[+), are such that cos ¢.==*1 and G #y . ,J4+)=0
and, as mentioned in Sec. I, these are fixed points of the
unperturbed dynamics.

The renormalized gyrofrequencies for orbits around the
fixed points, w.., are obtained as functions of J from w.
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FIG. 1. A full portrayal of the unperturbed phase space (¢=0, p,=1.0).

= ;. #ylcrp, and are plotted in Fig. 2 for the + and —
branches. Similarly to the case where no wave is present, it is
seen that the gyrofrequencies decrease with J. This means
that primary resonances located at J,, (n=1,%2,...) with

nw.(J,)=0 )
and secondary resonances located at J,, , with

nw«(J,,)=pQ, ®)
and p#*1, are such that larger n’s correspond to larger
Jup's-

To illustrate the typical bifurcational behavior of the sys-
tem, the following analysis is performed for initial conditions
within the rightmost lobule (the “~” lobule) of Fig. 1. The
choice is dictated by the fact that this is the lobule first de-
veloping substantial degrees of chaoticity.

In order to be consistent with existing results the follow-
ing condition indicated in previous wave—particle numerical
simulations is assumed:* w_(J=0)>Q. This, in turn, implies
that the lower primary resonance present in the system will
be the one with n=+1.

0.50

GYROFREQUENCY

-0.20 L

FIG. 2. The frequencies w, and w_ as a function of the action J.
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We finaily mention that in a periodic Poincaré plota J,, »
resonance appears as a resonant pendulum-like island chain
with its respective elliptic and hyperbolic fixed points. These
fixed points are in fact a discrete-mapping version of peri-
odic orbits and whenever mentioned in the text they should
be understood within this context. Elliptic points of a J, ,
resonance shall be denoted as (J, ,), and hyperbolic points
as (Jp plu-

ill. NUMERICAL INTEGRATION OF THE EQUATIONS
OF MOTION

All the simulations shall be performed on basis of sta-
bility analysis and Poincaré plots. These two approaches
should complement each other.

A. Stability analysis

The behavior of the fixed points as a function of the
modulation amplitude € may be accurately followed with
help of a Newton—Raphson algorithm®® and the respective
stability diagrams. In the stability diagrams, one plots the
so-called stability index (&) of a particular periodic orbit as a
function of the perturbing parameter, the factor € in our case.
If |¢j<1 the corresponding orbit is stable (elliptic fixed
points) and if |@|>1 the orbit is unstable (hyperbolic fixed
points). Two kinds of orbital bifurcations are usual for this
kind of Hamiltonian system. In a forward or backward pe-
riod doubling bifurcation, periodic orbits undergo direct or
inverse period doubling bifurcation with a=—1 at the bifur-
cation point. In a backward tangent bifurcation, existing el-
liptic points of a periodic orbit collapse with hyperbolic
points of a neighboring orbit of the same periodicity;” in this
case, both orbits simply cease to exist with @=+1 at the end
point.

These are the basic characteristics that shall be needed to
clarify the stability properties of the orbits.

The analysis is performed for the two representative re-
gimes of frequency modulation introduced before. One first
considers the case of relatively large frequencies implying
small wave-—particle mismatches for which a conveniently
defined scaled mismatch 3_ satisfies

w_—

A

<I. ©)

To accomplish that one takes €1=0.32, which implies
J_~0.16. This is the case portrayed in the sequence repre-
sented in Fig. 3.

Two points with the same modulational periodicity ap-
pear in the figure. One of them is the CFP_ and the other is
the elliptic point of the J; resonance, (/;),. The figure
shows that the CFP_ vanishes when it collapses with (J,),,
and that later on (J,), undergoes period doubling bifurca-
tion. We have accompanied two of such bifurcations, and a
search for higher-order stable bifurcated points at e=1.0
failed to indicate the presence of this kind of orbits. The
conclusion is that (J,), undergoes an infinite cascade of bi-
furcations as the modulational level grows to the maximum
allowed value. In this situation, one should expect a reason-
able degree of stochasticity over the phase space.
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FIG. 3. The stability
0=0.32=6~0.16.

index a in the small mismatch case,

The other limiting case, the case of large values of 5‘, is
represented in Fig. 4 where one takes 1=0.1 with 5~0.75.
One sees that the overall orbital behavior turns out to be
different from the previous case.

To start with the analysis, one can note that in this case,
not only a resonance of the type J, is present as before.
Resonances of the type J,, and J; 3 (J,>J) >/, ;) may
also be found due to the fact that Eq. (8) can now be solved
not only for positive values of J,, but for positive values J 5
and J, ; as well.

From the figure one sees that the CFP_ still vanishes via
a backward tangent bifurcation as it collapses with a neigh-
boring hyperbolic point. One should note, however, that this
hyperbolic point is no longer the hyperbolic point of the J,
primary resonance; now it is (J; 3),, the closest hyperbolic
point to the CFP_ with periodicity n=1.

Next, one can observe that CFP_ passes through an un-
stable region before it regains stability and collapses. In this
unstable region denoted by *““‘u” in the figure, the CFP_ un-
dergoes one single period doubling bifurcation. To prevent
the appearance of the “w” region, the hyperbolic point
should be located at very close proximity to the CFP..,
which indicates that such a kind of temporary unstable be-
havior may be typical in the large mismatch case. In the
small mismatch case, the larger sizes of the resonant island
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FIG. 4. Stability index in the iarge mismatch case, 0=0.1:5~0.75.
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seems to cause the collapse without the preceding destabili-
zation of the CFP_ . This unstable feature shall be also ap-
preciated with help of the appropriate Poincaré plot.

Finally, one considers the behavior of the elliptic points
(JDer (U1 2)er (J1,3),. Among these points one observes
that only the first, (/,),, is not destabilized for € below its
maximum allowed value. The other two undergo full cas-
cades of period doubling sequences. As in the previous situ-
ation, one could not find any higher-order stable orbits origi-
nating from any of them, and the conclusion is that both
elliptic points undergo full period doubling cascades. In spite
of the period doubling sequences, the lingering presence of
(J1). leads to the conclusion that giobal spread of chaos
should be somewhat inhibited.

Let us now turn to Poincaré plots to examine some of the
peculiar features revealed by the diagrams.

B. Poincaré plots

In Fig. 5, a sequence of plots of the 1=0.32 case is
presented for an increasing modulation amplitude. In Fig.
5(a), one observes both the CFP_ and the full J, resonance,
with both hyperbolic and elliptic points present. In Fig. 5(b),
only the elliptic point (J,), survives, and in Fig. 5(c), € is
just above the period doubling amplitude observable in Fig.
(3). Also the case €=1.0 has been considered; a search for
higher-order stable fixed points originated from (J,), [we
have launched several grids of 50X 50 initial conditions close
to last position of (J,).], as mentioned before, failed to de-
tect any. The conclusion is that (J,), probably follows the
full cascade of bifurcations to chaos as one proceeds from
small to the largest possible modulational amplitude. One,
therefore, associates small mismatches with a tendency to
infinite period doubling cascades for (J,}, .

In Fig. 6, the 3=0.1 case is examined. In Fig. 6(a), one
can observe the CFP_ along with the full J/, and J,, and J, 5
resonances. Note that the locations of the fixed points on the
dXI plane satisfy Uy as)e™> Uy sy and
(I, 2),<(Iy ), . In Fig. 6(b), one magnifies the CFP_ region
in its unstable period doubled region to show the period
doubled regime. In Fig. 6(c), the restabilized CFP_ is shown.
Finally, in Pig. 6(d), the presence of (J,), is confirmed for
the largest perturbing value of € e=1.0. Global chaos is
therefore inhibited, because orbits with initial condition close
enough to (J,), can never be stochastically accelerated.

IV. FINAL REMARKS

To summarize, the transition from regular to global cha-
otic dynamics has been analyzed in a system of particles
subjected to the combined action of strong guiding magnetic
fields and modulated high intensity electromagnetic modes.
For typical system parameters of a cyclotron-maser accelera-
tor, we have analyzed classes of stable orbits with the same
periodicity as the modulations when the modulational levels
are low. Two were identified as being of foremost impor-
tance. One of them was referred to as the central fixed point
orbit, CFP_, and the other as the periodic orbits (J ,,p)e.
Depending on the mismatch between particle renormalized
gyrofrequency and wave frequency, different routes to global
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spread of stochastic trajectories may take place. Among other
results, it was found out that for small scaled mismatches the
CFP_ is destroyed and that only a (J,), which undergoes a
complete sequence of period doubling bifurcations does ex-
ist. For large mismatches the CFP_ still vanishes but (J,),
fails to undergo the period doubling cascade. In this case,
however, other orbits with p=1 and p =2 which do undergo
the period doubling cascade are present. For even larger mis-
matches, one expects to see the birth of J, , with larger
values of p, with the ones with relatively small p values
failing to bifurcate. In the general case of large mismatches,
global spread of chaos is therefore inhibited. These results
are expected to be of relevance in the description of maser
accelerating processes whenever the maser beams are likely
to be slowly modulated. This could be the case of laboratory
systems where the maser beams are externally modulated by
varying control parameters (like the waveguide radius, for
instance)® or the case of astrophysical particle jets where the
radiation beam is both self-modulated’® or modulated by
wave—particle energy exchange effects.>* In the magneto-
sphere of pulsars where ¢|A| /M c?~py~1.0, for instance,
the modulational frequencies can be easily found in the range
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FIG. 5. Bifurcation sequence in the small mismatch case, 5~0.16. We take
€(a,b,c)=0.14, 016, and 0.937, respectively.

Qimensional! @maser~§2~0.01>w_ or larger, which effectively
may set the system in the large mismatch regime.

As far as small mismatches are concerned, we point out
that the high intensity regime py~1 is characterized by
modulational frequencies that can be of the same order of
magnitude as the linear frequencies of the electromagnetic
carrier modes, where we recall that for py=1 one has
Q/w_~0.46. Rigorously speaking, one could not refer to this
fast process as a modulational one, because it would not be
possible to precisely define the slowly varying amplitude of
the carrier and the corresponding well-defined high fre-
quency. It is to be understood that we have used this termi-
nology throughout the text for sake of simplicity.

In any case, these “fast modulations™ can indeed arise in
systems with a single spatial mode (space periodicity deter-
mined by a single wave vector k) as the one we are consid-
ering. In fact, it can be seen that the modulational time scale
in a self-consistent model linearly depends on the particle
density.3 In low-density beams with 108 electrons/cm3, for
instance, the modulation frequency is much smaller than the
carrier frequency. For larger densities such as 10"
e1ectrons/cm3, on the other hand, the frequencies become
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FIG. 6. Bifurcation sequence in the large mismatch case, 5~0.75. We take a,b,c,d)=0.5, 0.82, 0.84, and 1.0, respectively.

comparable and the slow modulation assumptions must be
abandoned.

If alternatively one looks at the problem without consid-
ering any self-consistent effects, fast modulations could be
seen as driven by the beating of a pair of waves with not so
close carrier frequencies w, and w,. Indeed, one would have
a beat electromagnetic field characterized by two frequencies
1/2(w,+w,)=, (the average carrier frequency) and
1/2(w— ;)= _ (the “modulation” frequency), whose ratio
could be arbitrary, depending on the choice of w; and w,.
This could be the model describing self-modulations of
ultraintense  electromagnetic  modes  propagating in
plasmas—in this kind of system it is known that the modu-
lational time scale reduces with increasing wave amplitude.’
Note that in this situation each wave would contribute its
own wave vector to the process. While our model employs
only one single spatial mode and therefore can not entirely
reflect this spatiotemporal beat configuration, there is no rea-
son to expect that the general conclusions on the bifurca-
tional behavior as a function of the mismatch & (now rede-
fined appropriately in terms of £, and €}, ) would suffer any
considerable changes.
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