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This paper is concerned with the orbital dynamics of electrons in a cyclotron maser [C. Chen, Phys. 
Rev. A 46, 6654 (1992)] with modulated maser fields. Amplitude modulation is a natural result of 
wave-particle energy exchanges, and for typical system parameters, the nonlinear bifurcations of 
periodic orbits are investigated as the modulation level increases. Attention is focused on primary 
stable orbits exhibiting the same periodicity as the modulation for low modulational levels. This 
interest is related to the fact that the destruction of these orbits is generally associated with 
considerable spread of chaos over the phase space. It is found that two groups of such orbits do 
exist, each group located in a particular region of the phase space. As the modulation level grows, 
the overall behavior can be classified as a function of the modulation frequency. If this frequency is 
large there are two orbits in the group; one undergoes an infinite cascade of period doubling 
bifurcations and the other simply collapses with neighboring unstable orbits. If the frequency is 
small the number of orbits is larger; the collapsing orbit is still present and some of the others may 
fail to undergo the period doubling cascade. 0 1994 American Institute of Physics. 

I. INTRODUCTION 

There has been a growing interest in the study of sto- 
chastic relativistic interactions involving magnetized elec- 
trons and electromagnetic waves. 

This is so because relativistic particles are likely to ab- 
sorb large quantities of electromagnetic energy when the 
wave-particle interaction is chaotic. 

It is relatively easy to generate chaotic orbits for this 
type of system. Indeed, by considering a stationary and ho- 
mogeneous background magnetic field, it is generally shown 
that there exists a critical wave amplitude above which most 
of the particle phase-space becomes chaotic.’ One noticeable 
case, however, does not follow this general rule: when the 
wave is circularly polarized and propagates parallel to the 
magnetic field, the dynamics can be shown to be exactly 
integrable. This kind of configuration, known as the cyclo- 
tron resonance maser accelerator (CRMA), is presently rec- 
ognized as of importance both for laboratory and astrophysi- 
cal beam studies.’ 

It has been shown3 that if the initial particle energies in a 
CRMA are small enough, these particles are rapidly bunched 
(in gyrophase) and subsequently accelerated to very large 
energies. On the other hand, if the initial energies are not 
small enough, phase bunching is absent and the average ac- 
celeration is very small.4 Considering these facts, one could 
say that unless the beam is carefully set at small initial en- 
ergies, the global accelerating process tends to be ineffective. 

Given that regular acceleration may not be always domi- 
nant in a CRMA, an issue to be addressed would be the 
possibility of deterministic stochastic acceleration. This 
could be the governing accelerating mechanism when beam 
control is poor or even absent. Such is the case of astrophysi- 
cal beams in pulsar magnetospheres, for instance, where we 
point out that the usual wave-particle model is identical to 
the one we shall making use of.5 The analysis is also relevant 
for laboratory schemes where the accelerating length is long 
enough such that the effect of long-range inhomogeneities 

cannot be discarded.6 The problem with stochastic processes, 
as mentioned before, is that constant amplitude modes gen- 
erate only regular trajectories. One should note, however, 
that amplitude modulations may easily develop in this kind 
of system because of various factors. Among these, at least 
three can be considered as of relevance: (i) Low-energy par- 
ticles, even if in small number, interact with the wave and 
cause pump depletion, so that higher-energy particles will 
view the resulting wave as a modulated train4 (ii) Electro- 
magnetic waves are unstable and can frequently develop 
nonlinear amplitude self-modulations.5 (iii) Slow modula- 
tions on the wave can also be produced in laboratories by 
slowly varying control parameters in an experiment.6 

It shall be shown that amplitude modulations, no matter 
their precise origin, may indeed be responsible for the devel- 
opment of bifurcations and stochastization of periodic orbits 
in cyclotron-maser systems. 

Attention is focused on primary resonances generating 
trajectories with the same period as the modulation when the 
modulational amplitudes are small. This is done because this 
kind of trajectories tends to be the most stable present in the 
system, a feature leading to the conclusion that the respective 
orbital destabilization may be connected with global spread 
of chaos throughout the phase space.7 It shall be seen that 
two groups of orbits with these kind of characteristics are 
present for typical system parameters, each group located 
around a particular point of the phase space. One orbit of 
each group is a fixed point of the unperturbed dynamics, and 
when a small modulation is turned on, it acquires the same 
periodicity of the modulation, i.e., the modulation removes 
the corresponding orbital degeneracy. The other orbits turn 
out to be legitimate periodic orbits. It shall be found conve- 
nient to classify the overall behavior as a function of the 
modulation frequency. When this frequency is comparable to 
the fixed point gyrofrequency of one group, this group is, in 
fact, constituted only by two orbits. The orbit initially pre- 
senting degeneracy ceases to exist as it collapses with a 
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neighboring unstable periodic orbit; the other undergoes an 
infinite cascade of period doubling bifurcations. When the 
frequency is relatively small, the group contains more than 
two trajectories. The collapsing orbit behaves similarly as in 
the previous case. However, before it vanishes, it goes tem- 
porarily unstable within a band of the modulation ampli- 
tudes. Some of the others fail to undergo the period doubling 
sequence, a feature inhibiting global spread of chaos. 

It should be remarked that the appropriate resonance 
analysis involves the calculation of particle gyrofrequencies. 
These gyrofrequencies should be fully renormalized by the 
presence of the large-amplitude maser modes, and as shall be 
seen, the calculations are made accordingly. 

The paper is organized as follows. In Sec. II, one intro- 
duces the model, analyzes the regular motion generated by 
constant amplitude modes, and calculates the renormalized 
gyrofrequencies; in Sec. III, one numerically investigates the 
sequence of bifurcations for orbits presenting the same peri- 
odicity as the modulation for small modulational levels; and 
in Sec. IV, the work is concluded. 

II. THE MODEL AND ITS REGULAR DYNAMICS 

One starts by introducing the Hamiltonian of a test par- 
ticle submitted to the combined action of a constant guiding 
magnetic field Be and an intense electromagnetic mode. Both 
the guide field and the wave vector of the fluctuating field are 
assumed to be aligned with the z axis of the chosen reference 
frame. The vector potential of the wave, A, is written as 

2 A=--m[cos(kz-ot)ii-sin(kz-ot)$], (1) 

where p(t) =~a[1 +~cos(Q,,,r)] (&l), with firnod as the 
modulation frequency, is now dependent on time. The elec- 

I 

tron charge is denoted by e, m is its mass, c is the velocity of 
light, o is the wave frequency, and k= w/c. The test particle 
Hamiltonian is adimensionally written as 

A9=mc2{1+[P,t&c0s(kz-wt)]2+[Py+X 

- & sin(kz- ot)12+ Pz}“‘, (2) 
which can be cast in the guiding-center resonant form 

.%=-AZ+ J1+2z+(LjZ)*+2J2pz cos (b+p, (3) 
if one: (i) defines uC,=eBoImc and ij=:wlwCO; (ii) normal- 
izes t-~,,t, r-+(w&)r, P-+P/mc, S+.??9/mc2; (iii) intro- 
duces canonical guiding-center coordinates P, 
= &? cos qb and x + P, = @ sin 4; (iv) performs the 
time removal canonical transformation Z--+Z, B-&Z+,.%, 
++&(z- t)+rft, and (v) finally introduces the adimensional 
modulation frequency as fi=!&,,$w,, setting P,-+O. 

One now looks at the dynamics when ,o=&=const. 
For this exactly integrable case, where the Hamiltonian 

is a conserved quantity, Eq. (3) becomes 
%$,=%(I, ~$,p= pc) = E and we can introduce an action 
variable J, according to 

J=& f G% d)d9- (4) 

Then, on inserting Z(E, 46) from Eq. (3) into Eq. (4) and 
inverting the resulting expression, one obtains 

sYo(J)=a cos 

where 

a= 

2a 47r 
c=o, -, -, 3 3 

d=2J&- ;. 

Variable c takes three distinct values, but only the first and 
third ones have physical meaning. The second generates 
negative numerical values of ;%a which can not correspond 
to any physically possible dynamical branch because the 
Hamiltonian is always positive, as can be seen if one writes 
Eq. (3) (for the most dangerous case cos c$= - 1) in the 
equivalent form 
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CBOfmin 

=- &Z-l- J(&Z)Q 1 +z+2&7+(2%- Jt)2>0. 
(6) 

In what follows & shall be chosen & = 1 /Jl + pe. 
which corresponds to the autoresonance regime.3 The physi- 
cal solutions correspond to the two classes of orbits shown in 
Fig. 1. The value of po is taken equal to one here and further 
on, since we are considering intense electromagnetic modes. 
Each class revolves around its own unperturbed central fixed 
point which shall be called CFP,, with CFP+=CFF’(c=O) 
and CFP-=CFI?(c=47~/3). The coordinates of C!FPr , 
(c#+ ,I?), are such that cos &= + 1 and ~,~o(& ,Zr)=O 
and, as mentioned in Sec. I, these are fixed points of the 
unperturbed dynamics. 

The renormalized gyrofrequencies for orbits around the 
fixed points, oc, are obtained as functions of J from w? 
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FIG . 1.  A  full  po r t raya l  of  t he  u n p e r t u r b e d  p h a s e  s p a c e  ( e = O ,  p o =  1.0) .  

=  d&$lcFp,  a n d  a re  p lot ted in  Fig. 2  for the +  a n d  - 
b ranches .  Simi lar ly  to the case  w h e r e  n o  w a v e  is present ,  it is 
s e e n  that the gyro f requenc ies  dec rease  with J. This  m e a n s  
that p r imary  resonances  located at J, (n  =  2  1,&2,...) wi th 

no, (J , )=n (7)  
a n d  secondary  resonances  located at J,,p wi th 

n 4 J r & = ~ ‘nr  (8)  
a n d  p  #  t 1, a re  such  that la rger  n ’s co r respond  to la rger  
J n &  

In o rde r  to b e  consistent  wi th exist ing results the fo l low- 
ing  condi t ion  ind icated in  p rev ious  wave-par t ic le  numer ica l  
s imulat ions is assumed :4  CL(J=O)>f l .  This, in  turn, impl ies 
that the lower  p r imary  resonance  present  in  the system wil l  
b e  the o n e  with n=+ l .  

T o  i l lustrate the typical b i furcat ional  behav io r  of the sys- 
tem, the fo l lowing analys is  is pe r fo rmed  for init ial condi t ions 
wi th in the r ightmost  lobu le  ( the “-” lobu le)  of Fig. 1. T h e  
cho ice  is d ictated by  the fact that this is the lobu le  first de -  
ve lop ing  substant ia l  d e g r e e s  of chaoticity. 

O S 0  I 

FIG . 2.  T h e  f requenc ies  o +  a n d  o -  as  a  func t ion  of  t he  ac t ion  J. 
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W e  finally m e n t ion that in  a  per iod ic  Po inca re  plot  a  J,,p 
resonance  a p p e a r s  as  a  resonan t  pendu lum- l i ke  is land cha in  
wi th its respect ive ell iptic a n d  hyperbo l ic  f ixed points.  These  
f ixed points  a re  in  fact a  d isc re te -mapp ing  vers ion of per i -  
od ic  orbi ts a n d  w h e n e v e r  m e n t ioned in  the text they shou ld  
b e  unders tood  wi th in this context.  El l ipt ic points  of a  J,,, 
r esonance  shal l  b e  d e n o t e d  as  (J&, a n d  hyperbo l ic  points  
as  (Jn,p)h.  

III. N U M E R ICAL  I N T E G R A T I O N  O F  T H E  E Q U A T IO N S  
O F  M O T IO N  

Al l  the s imulat ions shal l  b e  pe r fo rmed  o n  bas is  of sta- 
bility analys is  a n d  Po inca re  plots. These  two app roaches  
shou ld  comp lemen t  e a c h  other.  

A . S tabil ity analys is  

T h e  behav io r  of the f ixed points  as  a  funct ion of the 
modu la t ion  ampl i tude  E  m a y  b e  accurate ly  fo l lowed with 
he lp  of a  New ton -Raphson  a lgo r i t hm8V9 a n d  the respect ive 
stabil i ty d iagrams.  In the stabil i ty d iagrams,  o n e  plots the 
so-ca l led stabil i ty index  (cy) of a  par t icular  per iod ic  orbi t  as  a  
funct ion of the per tu rb ing  parameter ,  the factor E  in  ou r  case.  
If la /<1  the co r respond ing  orbi t  is s table (el l ipt ic f ixed 
points)  a n d  if 1  a I>1  the orbi t  is uns tab le  (hyperbo l ic  f ixed 
points).  T w o  k inds of orbi ta l  b i furcat ions a re  usua l  for this 
k ind  of Hami l ton ian  system. In a  fo rward  o r  backward  pe -  
r iod  doub l i ng  bi furcat ion, per iod ic  orbi ts u n d e r g o  direct  o r  
inverse pe r iod  doub l i ng  bi furcat ion wi th cy=  - 1  at the bi fur-  
cat ion point .  In a  backward  tangent  bi furcat ion, exist ing el -  
l iptic points  of a  per iod ic  orbi t  co l lapse with hyperbo l ic  
points  of a  ne ighbo r ing  orbi t  of the s a m e  periodici ty;’ in  this 
case,  bo th  orbi ts s imply cease  to exist wi th a =  +  1  at the e n d  
point .  

T h e  analys is  is pe r fo rmed  for the two representat ive re-  
g imes  of f requency  modu la t ion  in t roduced before.  O n e  first 
cons iders  the case  of relat ively la rge  f requenc ies  imply ing  
smal l  wave-par t ic le  mismatches  for wh ich  a  convenient ly  
de f ined  sca led  mismatch  % - satisfies 

These  a re  the bas ic  character ist ics that shal l  b e  n e e d e d  to 
clarify the stabil i ty proper t ies  of the orbits. 

2-c  
w--cl  

I I 
-  G l. w-  (9)  

T o  accompl ish  that o n e  takes fl= O .32, wh ich  impl ies 
S- -O.  16.  This  is the case  por t rayed in  the s e q u e n c e  repre -  
sen ted  in  Fig. 3. 

T w o  points  wi th the s a m e  modu la t iona l  per iodic i ty ap -  
p e a r  in  the f igure. O n e  of t hem is the C F P -  a n d  the o ther  is 
the ell iptic po in t  of the J1  resonance ,  (  J1),  . T h e  f igure 
shows  that the C F P -  van ishes  w h e n  it co l lapses with (Jl)h, 
a n d  that later o n  (J1), u n d e r g o e s  pe r iod  doub l i ng  bi furca-  
t ion. W e  h a v e  a c c o m p a n i e d  two of such  bi furcat ions, a n d  a  
search  for h igher -o rder  s table b i furcated points  at E =  1 .0  
fa i led to ind icate the p resence  of this k ind  of orbits. T h e  
conc lus ion  is that (J,), u n d e r g o e s  a n  inf inite cascade  of b i -  
furcat ions as  the modu la t iona l  level  g rows  to the m a x i m u m  
a l l owed  value.  In this si tuat ion, o n e  shou ld  expect  a  reason-  
ab le  d e g r e e  of stochasticity over  the p h a s e  space.  
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FIG. 3. The stability index a in the small mismatch case, 
R=0.32+&0.16. 

The other limiting case, the case of large valuesfff & is 
represented in Fig. 4 where one takes n=O.l with S-0.75. 
One sees that the overall orbital behavior turns out to be 
different from the previous case. 

To start with the analysis, one can note that in this case, 
not only a resonance of the type J, is present as before. 
Resonances of the type J1,2 and J1,3 (J,>J,,2>J1,3) may 
also be found due to the fact that Eq. (8) can now be solved 
not only for positive values of J, , but for positive values J,,z 
and J1,3 as well. 

From the figure one sees that the CFP- still vanishes via 
a backward tangent bifurcation as it collapses with a neigh- 
boring hyperbolic point. One should note, however, that this 
hyperbolic point is no longer the hyperbolic point of the J, 
primary resonance; now it is ( J1 ,3)h , the closest hyperbolic 
point to the CFP- with periodicity n = 1. 

Next, one can observe that CFP- passes through an un- 
stable region before it regains stability and collapses. In this 
unstable region denoted by “u” in the figure, the CFP- un- 
dergoes one single period doubling bifurcation. To prevent 
the appearance of the “u” region, the hyperbolic point 
should be located at very close proximity to the CFP- , 
which indicates that such a kind of temporary unstable be- 
havior may be typical in the large mismatch case. In the 
small mismatch case, the larger sizes of the resonant island 

2.0 /' 

(Jib ,A’ a--- (J&I -cr 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 1.0 
E 

FIG. 4. Stability index in the large mismatch case, R=O.l&--0.75. 

seems to cause the collapse without the preceding destabili- 
zation of the CFP- . This unstable feature shall be aIso ap- 
preciated with help of the appropriate Poincare plot. 

Finally, one considers the behavior of the elliptic points 
(JI),, (J1,2),, (J1,3)e, Among these points one observes 
that only the first, (J,), , is not destabilized for E below its 
maximum ailowed value. The other two undergo full cas- 
cades of period doubling sequences. As in the previous situ- 
ation, one could not find any higher-order stable orbits origi- 
nating from any of them, and the conclusion is that both 
elliptic points undergo full period doubling cascades. In spite 
of the period doubling sequences, the lingering presence of 
(J1), leads to the conclusion that global spread of chaos 
shouId be somewhat inhibited, 

Let us now turn to Poincare plots to examine some of the 
peculiar features revealed by the diagrams. 

B. Poincarb plots 

In Fig. 5, a sequence of plots of the fi=O.32 case is 
presented for an increasing modulation amplitude. In Fig. 
5(a), one observes both the CFP- and the full J1 resonance, 
with both hyperbolic and elliptic points present. In Fig. 5(b), 
only the elliptic point (J,), survives, and in Fig. 5(c), E is 
just above the period doubling amplitude observable in Fig. 
(3). Also the case E= 1.0 has been considered; a search for 
higher-order stable fixed points originated from (J1), [we 
have launched several grids of 50X 50 initial conditions close 
to last position of ( Jl)e], as mentioned before, failed to de- 
tect any. The conclusion is that (J,), probably follows the 
full cascade of bifurcations to chaos as one proceeds from 
small to the largest possible modulational amplitude. One, 
therefore, associates small mismatches with a tendency to 
infinite period doubling cascades for (J, ), . 

In Fig. 6, the s1=0.1 case is examined. In Fig. 6(a), one 
can observe the CFP- along with the full J, and J,,, and J,,, 
resonances. Note that the locations of the fixed points on the 
4Xf plane satisfy ~~l.cl,3,~~'~~l.cl.3)~~ and 
(I, 2)h<(Z,,z)e. In Fig. 6(b), one magnifies the CFP- region 
in its unstable period doubled region to show the period 
doubled regime. In Fig. 6(c), the restabilized CFP- is shown. 
Finally, in Fig. 6(d), the presence of (J1), is confirmed for 
the largest perturbing value of e, E= 1.0. Global chaos is 
therefore inhibited, because orbits with initial condition close 
enough to (J,), can never be stochastically acceIerated. 

IV. FINAL REMARKS 

To summarize, the transition from regular to global cha- 
otic dynamics has been analyzed in a system of particles 
subjected to the combined action of strong guiding magnetic 
fields and modulated high intensity electromagnetic modes. 
For typical system parameters of a cyclotron-maser accelera- 
tor, we have analyzed classes of stable orbits with the same 
periodicity as the modulations when the modulational levels 
are low. Two were identified as being of foremost impor- 
tance. One of them was referred to as the central fixed point 
orbit, CFP- , and the other as the periodic orbits (J, ,p)e . 
Depending on the mismatch between particle renormalized 
gyrofrequency and wave frequency, different routes to global 
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spread of stochastic trajectories may take place. Among other 
results, it was found out that for small scaled mismatches the 
CFP- is destroyed and that only a (J,), which undergoes a 
complete sequence of period doubling bifurcations does ex- 
ist. For large mismatches the CFP- still vanishes but (J1), 
fails to undergo the period doubling cascade. In this case, 
however, other orbits with p = 1 and p =2 which do undergo 
the period doubling cascade are present. For even larger mis- 
matches, one expects to see the birth of J,,, with larger 
values of p, with the ones with relatively small p values 
failing to bifurcate. In the general case of large mismatches, 
global spread of chaos is therefore inhibited. These results 
are expected to be of relevance in the description of maser 
accelerating processes whenever the maser beams are likely 
to be slowly modulated. This could be the case of laboratory 
systems where the maser beams are externally modulated by 
varying control parameters (like the waveguide radius, for 
instance)6 or the case of astrophysical particle jets where the 
radiation beam is both self-modulated5 or modulated by 
wave-particle energy exchange effects.3Y4 In the magneto- 
sphere of pulsars where elA(maSe./m~2-~,,- 1.0, for instance, 
the modulational frequencies can be easily found in the range 

4.0 

3.0 

1 2.0 

1.0 

0.0 / 
2.50 2.75 3.00 3.25 3.50 1.7 

(4 + 
5 

FIG. 5. Bifurcation sequence in the small mismatch case, i-0.16. We take 
e(u,b,c) =0.14, 016, and 0.937, respectively. 

%imensi0na1~%ase*~ R-O.Ol>w- or larger, which effectively 
may set the system in the large mismatch regime. 

As far as small mismatches are concerned, we point out 
that the high intensity regime po- 1 is characterized by 
modulational frequencies that can be of the same order of 
magnitude as the linear frequencies of the electromagnetic 
carrier modes, where we recall that for po= 1 one has 
ills--0.46. Rigorously speaking, one could not refer to this 
fast process as a modulational one, because it would not be 
possible to precisely define the slowly varying amplitude of 
the carrier and the corresponding well-defined high fre- 
quency. It is to be understood that we have used this termi- 
nology throughout the text for sake of simplicity. 

In any case, these “fast modulations” can indeed arise in 
systems with a single spatial mode (space periodicity deter- 
mined by a single wave vector k) as the one we are consid- 
ering. In fact, it can be seen that the modulational time scale 
in a self-consistent model linearly depends on the particle 
density.3 In low-density beams with lo8 electrons/cm3, for 
instance, the modulation frequency is much smaller than the 
carrier frequency. For larger densities such as 10” 
electrons/cm3, on the other hand, the frequencies become 
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FIG. 6. Bifurcation sequence in the large mismatch case, h-0.75. We take e((a,b,c,d) =0.5, 0.82, 0.84, and 1.0, respectively. 

comparable and the slow modulation assumptions must be 
abandoned. 
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