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Abstract

In Learning with Label Proportions (LLP), the objective is to learn a supervised
classifier when, instead of labels, only label proportions for bags of observations
are known. This setting has broad practical relevance, in particular for privacy
preserving data processing. We first show that the mean operator, a statistic which
aggregates all labels, is minimally sufficient for the minimization of many proper
scoring losses with linear (or kernelized) classifiers without using labels. We pro-
vide a fast learning algorithm that estimates the mean operator via a manifold
regularizer with guaranteed approximation bounds. Then, we present an itera-
tive learning algorithm that uses this as initialization. We ground this algorithm
in Rademacher-style generalization bounds that fit the LLP setting, introducing
a generalization of Rademacher complexity and a Label Proportion Complexity
measure. This latter algorithm optimizes tractable bounds for the corresponding
bag-empirical risk. Experiments are provided on fourteen domains, whose size
ranges up to ≈300K observations. They display that our algorithms are scalable
and tend to consistently outperform the state of the art in LLP. Moreover, in many
cases, our algorithms compete with or are just percents of AUC away from the
Oracle that learns knowing all labels. On the largest domains, half a dozen pro-
portions can suffice, i.e. roughly 40K times less than the total number of labels.

1 Introduction

Machine learning has recently experienced a proliferation of problem settings that, to some extent,
enrich the classical dichotomy between supervised and unsupervised learning. Cases as multiple
instance labels, noisy labels, partial labels as well as semi-supervised learning have been studied
motivated by applications where fully supervised learning is no longer realistic. In the present work,
we are interested in learning a binary classifier from information provided at the level of groups of
instances, called bags. The type of information we assume available is the label proportions per
bag, indicating the fraction of positive binary labels of its instances. Inspired by [1], we refer to this
framework as Learning with Label Proportions (LLP). Settings that perform a bag-wise aggregation
of labels include Multiple Instance Learning (MIL) [2]. In MIL, the aggregation is logical rather
than statistical: each bag is provided with a binary label expressing an OR condition on all the labels
contained in the bag. More general setting also exist [3] [4] [5].
Many practical scenarios fit the LLP abstraction. (a) Only aggregated labels can be obtained due to
the physical limits of measurement tools [6] [7] [8] [9]. (b) The problem is semi- or unsupervised
but domain experts have knowledge about the unlabelled samples in form of expectation, as pseudo-
measurement [5]. (c) Labels existed once but they are now given in an aggregated fashion for
privacy-preserving reasons, as in medical databases [10], fraud detection [11], house price market,
election results, census data, etc. . (d) This setting also arises in computer vision [12] [13] [14].

Related work. The setting was first introduced by [12], where a principled hierarchical model
generates labels consistent with the proportions and is trained through MCMC. Subsequently, [9] and
its follower [6] offer a variety of standard learning algorithms designed to generate self-consistent
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labels. [15] gives a Bayesian interpretation of LLP where the key distribution is estimated through an
RBM. Other ideas rely on structural learning of Bayesian networks with missing data [7], and on K-
MEANS clustering to solve preliminary label assignment [13] [8]. Recent SVM implementations [11]
[16] outperform most of the other known methods. Theoretical works on LLP belong to two main
categories. The first contains uniform convergence results, for the estimators of label proportions
[1], or the estimator of the mean operator [17]. The second contains approximation results for the
classifier [17]. Our work builds upon their Mean Map algorithm, that relies on the trick that the
logistic loss may be split in two, a convex part depending only on the observations, and a linear
part involving a sufficient statistic for the label, the mean operator. Being able to estimate the mean
operator means being able to fit a classifier without using labels. In [17], this estimation relies on a
restrictive homogeneity assumption that the class-conditional estimation of features does not depend
on the bags. Experiments display the limits of this assumption [11][16].

Contributions. In this paper we consider linear classifiers, but our results hold for kernelized for-
mulations following [17]. We first show that the trick about the logistic loss can be generalized,
and the mean operator is actually minimally sufficient for a wide set of “symmetric” proper scoring
losses with no class-dependent misclassification cost, that encompass the logistic, square and Mat-
sushita losses [18]. We then provide an algorithm, LMM, which estimates the mean operator via a
Laplacian-based manifold regularizer without calling to the homogeneity assumption. We show that
under a weak distinguishability assumption between bags, our estimation of the mean operator is
all the better as the observations norm increase. This, as we show, cannot hold for the Mean Map
estimator. Then, we provide a data-dependent approximation bound for our classifier with respect
to the optimal classifier, that is shown to be better than previous bounds [17]. We also show that
the manifold regularizer’s solution is tightly related to the linear separability of the bags. We then
provide an iterative algorithm, AMM, that takes as input the solution of LMM and optimizes it fur-
ther over the set of consistent labelings. We ground the algorithm in a uniform convergence result
involving a generalization of Rademacher complexities for the LLP setting. The bound involves
a bag-empirical surrogate risk for which we show that AMM optimizes tractable bounds. All our
theoretical results hold for any symmetric proper scoring loss. Experiments are provided on four-
teen domains, ranging from hundreds to hundreds of thousands of examples, comparing AMM and
LMM to their contenders: Mean Map, InvCal [11] and ∝SVM [16]. They display that AMM and
LMM outperform their contenders, and sometimes even compete with the fully supervised learner
while requiring few proportions only. Tests on the largest domains display the scalability of both
algorithms. Such experimental evidence seriously questions the safety of privacy-preserving sum-
marization of data, whenever accurate aggregates and informative individual features are available.
Section (2) presents our algorithms and related theoretical results. Section (3) presents experiments.
Section (4) concludes. A Supplementary Material [19] includes proofs and additional experiments.

2 LLP and the mean operator: theoretical results and algorithms

Learning setting Hereafter, boldfaces like p denote vectors, whose coordinates are denoted pl for
l = 1, 2, .... For any m ∈ N∗, let [m]

.
= {1, 2, ...,m}. Let Σm

.
= {σ ∈ {−1, 1}m} and X ⊆ Rd.

Examples are couples (observation, label) ∈ X × Σ1, sampled i.i.d. according to some unknown
but fixed distribution D. Let S .

= {(xi, yi), i ∈ [m]} ∼ Dm denote a size-m sample. In Learning
with Label Proportions (LLP), we do not observe directly S but S|y , which denotes S with labels
removed; we are given its partition in n > 0 bags, S|y = ∪jSj , j ∈ [n], along with their respective
label proportions π̂j

.
= P̂[y = +1|Sj ] and bag proportions p̂j

.
= mj/m with mj = card(Sj). (This

generalizes to a cover of S, by copying examples among bags.) The “bag assignment function” that
partitions S is unknown but fixed. In real world domains, it would rather be known, e.g. state, gender,
age band. A classifier is a function h : X → R, from a set of classifiers H. HL denotes the set of
linear classifiers, noted hθ(x)

.
= θ>x with θ ∈ X. A (surrogate) loss is a function F : R → R+.

We let F (S, h)
.
= (1/m)

∑
i F (yih(xi)) denote the empirical surrogate risk on S corresponding to

loss F . For the sake of clarity, indexes i, j and k respectively refer to examples, bags and features.

The mean operator and its minimal sufficiency We define the (empirical) mean operator as:

µS
.
=

1

m

∑

i

yixi . (1)
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Algorithm 1 Laplacian Mean Map (LMM)

Input Sj , π̂j , j ∈ [n]; γ > 0 (7); w (7); V (8); permissible φ (2); λ > 0;
Step 1 : let B̃

± ← arg minX∈R2n×d `(L,X) using (7) (Lemma 2)
Step 2 : let µ̃S ←

∑
j p̂j(π̂j b̃

+
j − (1− π̂j)b̃−j )

Step 3 : let θ̃∗ ← arg minθ Fφ(S|y,θ, µ̃S) + λ‖θ‖22 (3)
Return θ̃∗

Table 1: Correspondence between permissible functions φ and the corresponding loss Fφ.

loss name Fφ(x) −φ(x)

logistic loss log(1 + exp(−x)) −x log x− (1− x) log(1− x)
square loss (1− x)2 x(1− x)

Matsushita loss −x+
√

1 + x2
√
x(1− x)

The estimation of the mean operator µS appears to be a learning bottleneck in the LLP setting
[17]. The fact that the mean operator is sufficient to learn a classifier without the label information
motivates the notion of minimal sufficient statistic for features in this context. Let F be a set of
loss functions, H be a set of classifiers, I be a subset of features. Some quantity t(S) is said to be
a minimal sufficient statistic for I with respect to F and H iff: for any F ∈ F, any h ∈ H and
any two samples S and S′, the quantity F (S, h) − F (S′, h) does not depend on I iff t(S) = t(S′).
This definition can be motivated from the one in statistics by building losses from log likelihoods.
The following Lemma motivates further the mean operator in the LLP setting, as it is the minimal
sufficient statistic for a broad set of proper scoring losses that encompass the logistic and square
losses [18]. The proper scoring losses we consider, hereafter called “symmetric” (SPSL), are twice
differentiable, non-negative and such that misclassification cost is not label-dependent.

Lemma 1 µS is a minimal sufficient statistic for the label variable, with respect to SPSL and HL.

([19], Subsection 2.1) This property, very useful for LLP, may also be exploited in other weakly
supervised tasks [2]. Up to constant scalings that play no role in its minimization, the empirical
surrogate risk corresponding to any SPSL, Fφ(S, h), can be written with loss:

Fφ(x)
.
=

φ(0) + φ?(−x)

φ(0)− φ(1/2)

.
= aφ +

φ?(−x)

bφ
, (2)

and φ is a permissible function [20, 18], i.e. dom(φ) ⊇ [0, 1], φ is strictly convex, differentiable and
symmetric with respect to 1/2. φ? is the convex conjugate of φ. Table 1 shows examples of Fφ. It
follows from Lemma 1 and its proof, that any Fφ(Sθ), can be written for any θ ≡ hθ ∈ HL as:

Fφ(S,θ) =
bφ
2m

(∑

i

∑

σ

Fφ(σθ>xi)

)
− 1

2
θ>µS

.
= Fφ(S|y,θ,µS) , (3)

where σ ∈ Σ1.

The Laplacian Mean Map (LMM) algorithm The sum in eq. (3) is convex and differentiable
in θ. Hence, once we have an accurate estimator of µS, we can then easily fit θ to minimize
Fφ(S|y,θ,µS). This two-steps strategy is implemented in LMM in algorithm 1. µS can be retrieved
from 2n bag-wise, label-wise unknown averages bσj :

µS = (1/2)
n∑

j=1

p̂j
∑

σ∈Σ1

(2π̂j + σ(1− σ))bσj , (4)

with bσj
.
= ES[x|σ, j] denoting these 2n unknowns (for j ∈ [n], σ ∈ Σ1), and let bj

.
=

(1/mj)
∑
xi∈Sj

xi. The 2n bσj s are solution of a set of n identities that are (in matrix form):

B − Π>B± = 0 , (5)
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where B
.
= [b1|b2|...|bn]> ∈ Rn×d, Π

.
= [DIAG(π̂)|DIAG(1 − π̂)]> ∈ R2n×n and B± ∈ R2n×d is

the matrix of unknowns:

B±
.
=

[
b+1

1 |b+1
2 |...|b+1

n︸ ︷︷ ︸
(B+

)>

∣∣∣ b-1
1 |b-1

2 |...|b-1
n︸ ︷︷ ︸

(B–
)>

]>
. (6)

System (5) is underdetermined, unless one makes the homogeneity assumption that yields the Mean
Map estimator [17]. Rather than making such a restrictive assumption, we regularize the cost that
brings (5) with a manifold regularizer [21], and search for B̃

±
= arg minX∈R2n×d `(L,X), with:

`(L,X)
.
= tr

(
(B> − X>Π)Dw(B − Π>X)

)
+ γtr

(
X>LX

)
, (7)

and γ > 0. Dw
.
= DIAG(w) is a user-fixed bias matrix with w ∈ Rn+,∗ (and w 6= p̂ in general) and:

L
.
= εI +

[
La | 0
0 | La

]
∈ R2n×2n , (8)

where La
.
= D − V ∈ Rn×n is the Laplacian of the bag similarities. V is a symmetric similarity

matrix with non negative coordinates, and the diagonal matrix D satisfies djj
.
=
∑
j′ vjj′ ,∀j ∈ [n].

The size of the Laplacian is O(n2), which is small compared to O(m2) if there are not many bags.
One can interpret the Laplacian regularization as smoothing the estimates of bσj w.r.t the similarity
of the respective bags.

Lemma 2 The solution B̃
± to minX∈R2n×d `(L,X) is B̃

±
=
(
ΠDwΠ> + γL

)−1
ΠDwB.

([19], Subsection 2.2). This Lemma explains the role of penalty εI in (8) as ΠDwΠ> and L have
respectively n- and (≥ 1)-dim null spaces, so the inversion may not be possible. Even when this does
not happen exactly, this may incur numerical instabilities in computing the inverse. For domains
where this risk exists, picking a small ε > 0 solves the problem. Let b̃σj denote the row-wise
decomposition of B̃

± following (6), from which we compute µ̃S following (4) when we use these
2n estimates in lieu of the true bσj . We compare µj

.
= π̂jb

+
j −(1− π̂j)b−j ,∀j ∈ [n] to our estimates

µ̃j
.
= π̂j b̃

+
j − (1− π̂j)b̃−j ,∀j ∈ [n], granted that µS =

∑
j p̂jµj and µ̃S =

∑
j p̂jµ̃j .

Theorem 3 Suppose that γ satisfies γ
√

2 ≤ ((ε(2n)−1) + maxj 6=j′ vjj′)/minj wj . Let M
.
=

[µ1|µ2|...|µn]> ∈ Rn×d, M̃
.
= [µ̃1|µ̃2|...|µ̃n]> ∈ Rn×d and ς(V, B±)

.
= ((ε(2n)−1) +

maxj 6=j′ vjj′)2‖B±‖F . The following holds:

‖M − M̃‖F ≤ √
n

(√
2 min

j
w2
j

)−1

× ς(V, B±) . (9)

([19], Subsection 2.3) The multiplicative factor to ς in (9) is roughly O(n5/2) when there is no large
discrepancy in the bias matrix Dw, so the upperbound is driven by ς(., .) when there are not many
bags. We have studied its variations when the “distinguishability” between bags increases. This
setting is interesting because in this case we may kill two birds in one shot, with the estimation of
M and the subsequent learning problem potentially easier, in particular for linear separators. We
consider two examples for vjj′ , the first being (half) the normalized association [22]:

vncjj′
.
=

1

2

(
ASSOC(Sj , Sj)

ASSOC(Sj , Sj ∪ Sj′)
+

ASSOC(Sj′ , Sj′)

ASSOC(Sj′ , Sj ∪ Sj′)

)
= NASSOC(Sj , Sj′) , (10)

vG,sjj′
.
= exp(−‖bj − bj′‖2/s) , s > 0 . (11)

Here, ASSOC(Sj , Sj′)
.
=
∑
x∈Sj ,x′∈Sj′

‖x− x′‖22 [22]. To put these two similarity measures in
the context of Theorem 3, consider the setting where we can make assumption (D1) that there
exists a small constant κ > 0 such that ‖bj − bj′‖22 ≥ κmaxσ,j ‖bσj ‖22,∀j, j′ ∈ [n]. This is a
weak distinguishability property as if no such κ exists, then the centers of distinct bags may just
be confounded. Consider also the additional assumption, (D2), that there exists κ′ > 0 such that
maxj d

2
j ≤ κ′,∀j ∈ [n], where dj

.
= maxxi,x′i∈Sj

‖xi −xi′‖2 is a bag’s diameter. In the following
Lemma, the little-oh notation is with respect to the “largest” unknown in eq. (4), i.e. maxσ,j ‖bσj ‖2.
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Algorithm 2 Alternating Mean Map (AMMOPT)

Input LMM parameters + optimization strategy OPT ∈ {min,max} + convergence predicate PR

Step 1 : let θ̃0 ← LMM(LMM parameters) and t← 0
Step 2 : repeat

Step 2.1 : let σt ← arg OPTσ∈Σπ̂
Fφ(S|y,θt,µS(σ))

Step 2.2 : let θ̃t+1 ← arg minθ Fφ(S|y,θ,µS(σt)) + λ‖θ‖22
Step 2.3 : let t← t+ 1
until predicate PR is true

Return θ̃∗
.
= arg mint Fφ(S|y, θ̃t+1,µS(σt))

Lemma 4 There exists ε∗ > 0 such that ∀ε ≤ ε∗, the following holds: (i) ς(Vnc, B±) = o(1) under
assumptions (D1 + D2); (ii) ς(VG,s, B±) = o(1) under assumption (D1), ∀s > 0.

([19], Subsection 2.4) Hence, provided a weak (D1) or stronger (D1+D2) distinguishability assump-
tion holds, the divergence between M and M̃ gets smaller with the increase of the norm of the
unknowns bσj . The proof of the Lemma suggests that the convergence may be faster for VG,s. The
following Lemma shows that both similarities also partially encode the hardness of solving the clas-
sification problem with linear separators, so that the manifold regularizer “limits” the distortion of
the b̃±. s between two bags that tend not to be linearly separable.

Lemma 5 Take vjj′ ∈ {vG,.jj′ , v
nc
jj′}. There exists 0 < κl < κn < 1 such that (i) if vjj′ > κn then

Sj , Sj′ are not linearly separable, and if vjj′ < κl then Sj , Sj′ are linearly separable.

([19], Subsection 2.5) This Lemma is an advocacy to fit s in a data-dependent way in vG,sjj′ . The
question may be raised as to whether finite samples approximation results like Theorem 3 can be
proven for the Mean Map estimator [17]. [19], Subsection 2.6 answers by the negative.

In the Laplacian Mean Map algorithm (LMM, Algorithm 1), Steps 1 and 2 have now been described.
Step 3 is a differentiable convex minimization problem for θ that does not use the labels, so it does
not present any technical difficulty. An interesting question is how much our classifier θ̃∗ in Step 3
diverges from the one that would be computed with the true expression for µS, θ∗. It is not hard to
show that Lemma 17 in Altun and Smola [23], and Corollary 9 in Quadrianto et al. [17] hold for
LMM so that ‖θ̃∗ − θ∗‖22 ≤ (2λ)−1‖µ̃S − µS‖22. The following Theorem shows a data-dependent
approximation bound that can be significantly better, when it holds that θ>∗ xi, θ̃

>
∗ xi ∈ φ′([0, 1]),∀i

(φ′ is the first derivative). We call this setting proper scoring compliance (PSC) [18]. PSC always
holds for the logistic and Matsushita losses for which φ′([0, 1]) = R. For other losses like the square
loss for which φ′([0, 1]) = [−1, 1], shrinking the observations in a ball of sufficiently small radius
is sufficient to ensure this.

Theorem 6 Let fk ∈ Rm denote the vector encoding the kth feature variable in S : fki = xik
(k ∈ [d]). Let F̃ denote the feature matrix with column-wise normalized feature vectors: f̃k

.
=

(d/
∑
k′ ‖fk′‖22)(d−1)/(2d)fk. Under PSC, we have ‖θ̃∗ − θ∗‖22 ≤ (2λ+ q)−1‖µ̃S − µS‖22, with:

q
.
=

det F̃
>

F̃

m
× 2e−1

bφφ′′ (φ′−1(q′/λ))
(> 0) , (12)

for some q′ ∈ I .
= [±(x∗ + max{‖µS‖2, ‖µ̃S‖2})]. Here, x∗

.
= maxi ‖xi‖2 and φ′′ .= (φ′)′.

([19], Subsection 2.7) To see how large q can be, consider the simple case where all eigenvalues of
F̃
>

F̃, λk(F̃
>

F̃) ∈ [λ◦ ± δ] for small δ. In this case, q is proportional to the average feature “norm”:

det F̃
>

F̃

m
=

tr
(

F>F
)

md
+ o(δ) =

∑
i ‖xi‖22
md

+ o(δ) .
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The Alternating Mean Map (AMM) algorithm Let us denote Σπ̂
.
= {σ ∈ Σm :

∑
i:xi∈Sj

σi =

(2π̂j − 1)mj ,∀j ∈ [n]} the set of labelings that are consistent with the observed proportions π̂, and
µS(σ)

.
= (1/m)

∑
i σixi the biased mean operator computed from some σ ∈ Σπ̂ . Notice that the

true mean operator µS = µS(σ) for at least one σ ∈ Σπ̂ . The Alternating Mean Map algorithm,
(AMM, Algorithm 2), starts with the output of LMM and then optimizes it further over the set of
consistent labelings. At each iteration, it first picks a consistent labeling in Σπ̂ that is the best (OPT

= min) or the worst (OPT = max) for the current classifier (Step 2.1) and then fits a classifier θ̃ on the
given set of labels (Step 2.2). The algorithm then iterates until a convergence predicate is met, which
tests whether the difference between two values for Fφ(., ., .) is too small (AMMmin), or the number
of iterations exceeds a user-specified limit (AMMmax). The classifier returned θ̃∗ is the best in the
sequence. In the case of AMMmin, it is the last of the sequence as risk Fφ(S|y, ., .) cannot increase.
Again, Step 2.2 is a convex minimization with no technical difficulty. Step 2.1 is combinatorial. It
can be solved in time almost linear in m [19] (Subsection 2.8).

Lemma 7 The running time of Step 2.1 in AMM is Õ(m), where the tilde notation hides log-terms.

Bag-Rademacher generalization bounds for LLP We relate the “min” and “max” strategies of
AMM by uniform convergence bounds involving the true surrogate risk, i.e. integrating the unknown
distribution D and the true labels (which we may never know). Previous uniform convergence
bounds for LLP focus on coarser grained problems, like the estimation of label proportions [1].
We rely on a LLP generalization of Rademacher complexity [24, 25]. Let F : R → R+ be a
loss function and H a set of classifiers. The bag empirical Rademacher complexity of sample S,
Rbm, is defined as Rbm

.
= Eσ∼Σm

suph∈H{Eσ′∼Σπ̂
ES[σ(x)F (σ′(x)h(x))]. The usual empirical

Rademacher complexity equals Rbm for card(Σπ̂) = 1. The Label Proportion Complexity of H is:

L2m
.
= ED2mEI/2

1 ,I
/2
2

sup
h∈H

ES[σ1(x)(π̂s|2(x)− π̂`|1(x))h(x)] . (13)

Here, each of I/2
l , l = 1, 2 is a random (uniformly) subset of [2m] of cardinal m. Let S(I/2

l ) be the
size-m subset of S that corresponds to the indexes. Take l = 1, 2 and any xi ∈ S. If i 6∈ I/2

l then
π̂s|l(xi) = π̂`|l(xi) is xi’s bag’s label proportion measured on S\S(I/2

l ). Else, π̂s|2(xi) is its bag’s
label proportion measured on S(I/2

2 ) and π̂`|1(xi) is its label (i.e. a bag’s label proportion that would
contain only xi). Finally, σ1(x)

.
= 2 × 1x∈S(I/2

1 ) − 1 ∈ Σ1. L2m tends to be all the smaller as
classifiers in H have small magnitude on bags whose label proportion is close to 1/2.

Theorem 8 Suppose ∃h∗ ≥ 0 s.t. |h(x)| ≤ h∗,∀x,∀h. Then, for any loss Fφ, any training sample
of size m and any 0 < δ ≤ 1, with probability > 1− δ, the following bound holds over all h ∈ H:

ED[Fφ(yh(x))] ≤ EΣπ̂
ES[Fφ(σ(x)h(x))] + 2Rbm + L2m + 4

(
2h∗
bφ

+ 1

)√
1

2m
log

2

δ
.(14)

Furthermore, under PSC (Theorem 6), we have for any Fφ:

Rbm ≤ 2bφEΣm
sup
h∈H
{ES[σ(x)(π̂(x)− (1/2))h(x)]} . (15)

([19], Subsection 2.9) Despite similar shapes (13) (15), Rbm and L2m behave differently: when bags
are pure (π̂j ∈ {0, 1},∀j), L2m = 0. When bags are impure (π̂j = 1/2,∀j), Rbm = 0. As bags get
impure, the bag-empirical surrogate risk, EΣπ̂

ES[Fφ(σ(x)h(x))], also tends to increase. AMMmin

and AMMmax respectively minimize a lowerbound and an upperbound of this risk.

3 Experiments

Algorithms We compare LMM, AMM (Fφ = logistic loss) to the original MM [17], InvCal [11], conv-
∝SVM and alter-∝SVM [16] (linear kernels). To make experiments extensive, we test several ini-
tializations for AMM that are not displayed in Algorithm 2 (Step 1): (i) the edge mean map estimator,
µ̃EMM
S

.
= 1/m2(

∑
i yi)(

∑
i xi) (AMMEMM), (ii) the constant estimator µ̃1

S

.
= 1 (AMM1), and finally

AMM10ran which runs 10 random initial models (‖θ0‖2 ≤ 1), and selects the one with smallest risk;
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Figure 1: Relative AUC (wrt MM) as homogeneity assumption is violated (a). Relative AUC (wrt
Oracle) vs entropy on heart for LMM(b), AMMmin(c). AUC vs n/m for AMMmin

G and the Oracle (d).

Table 2: Small domains results. #win/#lose for row vs column. Bold faces means p-val < .001 for
Wilcoxon signed-rank tests. Top-left subtable is for one-shot methods, bottom-right iterative ones,
bottom-left compare the two. Italic is state-of-the-art. Grey cells highlight the best of all (AMMmin

G ).

algorithm MM LMM InvCal AMMmin AMMmax conv-
G G,s nc MM G G,s 10ran MM G G,s 10ran ∝SVM

L
M

M G 36/4
G,s 38/3 30/6
nc 28/12 3/37 2/37
InvCal 4/46 3/47 4/46 4/46
MM 33/16 26/24 25/25 32/18 46/4 ↙ e.g. AMMmin

G,s wins on AMMmin
G 7 times, loses 15, with 28 tiesG 38/11 35/14 30/20 37/13 47/3 31/7

G,s 35/14 33/17 30/20 35/15 47/3 24/11 7/15

A
M

M
m

in

10ran 27/22 24/26 22/28 26/24 44/6 20/30 16/34 19/31

A
M

M
m

ax MM 25/25 23/27 22/28 25/25 45/5 15/35 13/37 13/37 8/42
G 27/23 22/28 21/28 26/24 45/5 17/33 14/36 14/36 10/40 13/14
G,s 25/25 21/29 22/28 24/26 45/5 15/35 13/37 13/37 12/38 15/22 16/22
10ran 23/27 21/29 19/31 24/26 50/0 19/31 15/35 17/33 7/43 19/30 20/29 17/32

SV
M conv-∝ 21/29 2/48 2/48 2/48 2/48 4/46 3/47 3/47 4/46 3/47 3/47 4/46 0/50

alter-∝ 0/50 0/50 0/50 0/50 20/30 0/50 0/50 0/50 3/47 3/47 2/48 1/49 0/50 27/23

this is the same procedure of alter-∝SVM. Matrix V (eqs. (10), (11)) used is indicated in subscript:
LMM/AMMG, LMM/AMMG,s, LMM/AMMnc respectively denote vG,s with s = 1, vG,s with s learned
on cross validation (CV; validation ranges indicated in [19]) and vnc. For space reasons, results
not displayed in the paper can be found in [19], Section 3 (including runtime comparisons, and de-
tailed results by domain). We split the algorithms in two groups, one-shot and iterative. The latter,
including AMM, (conv/alter)-∝SVM, iteratively optimize a cost over labelings (always consistent
with label proportions for AMM, not always for (conv/alter)-∝SVM). The former (LMM, InvCal) do
not and are thus much faster. Tests are done on a 4-core 3.2GHz CPUs Mac with 32GB of RAM.
AMM/LMM/MM are implemented in R. Code for InvCal and ∝SVM is [16].
Simulated domains, MM and the homogeneity assumption The testing metric is the AUC. Prior
to testing on our domains, we generate 16 domains that gradually move away the bσj away from each
other (wrt j), thus violating increasingly the homogeneity assumption [17]. The degree of violation
is measured as ‖B± − B±‖F , where B± is the homogeneity assumption matrix, that replaces all bσj
by bσ for σ ∈ {−1, 1}, see eq. (5). Figure 1 (a) displays the ratios of the AUC of LMM to the
AUC of MM. It shows that LMM is all the better with respect to MM as the homogeneity assumption
is violated. Furthermore, learning s in LMM improves the results. Experiments on the simulated
domain of [16] on which MM obtains zero accuracy also display that our algorithms perform better
(1 iteration only of AMMmax brings 100% AUC).
Small and large domains experiments We convert 10 small domains [19] (m ≤ 1000) and 4 bigger
ones (m > 8000) from UCI[26] into the LLP framework. We cast to one-against-all classification
when the problem is multiclass. On large domains, the bag assignment function is inspired by [1]:
we craft bags according to a selected feature value, and then we remove that feature from the data.
This conforms to the idea that bag assignment is structured and non random in real-world problems.
Most of our small domains, however, do not have a lot of features, so instead of clustering on one
feature and then discard it, we run K-MEANS on the whole data to make the bags, for K = n ∈ 2[5].
Small domains results We perform 5-folds nested CV comparisons on the 10 domains = 50 AUC
values for each algorithm. Table 2 synthesises the results [19], splitting one-shot and iterative algo-
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Table 3: AUCs on big domains (name: #instances×#features). I=cap-shape, II=habitat,
III=cap-colour, IV=race, V=education, VI=country, VII=poutcome, VIII=job (number of bags);

for each feature, the best result over one-shot, and over iterative algorithms is bold faced.

algorithm mushroom: 8124× 108 adult: 48842× 89 marketing: 45211× 41 census: 299285× 381
I(6) II(7) III(10) IV(5) V(16) VI(42) V(4) VII(4) VIII(12) IV(5) VIII(9) VI(42)

EMM 55.61 59.80 76.68 43.91 47.50 66.61 63.49 54.50 44.31 56.05 56.25 57.87
MM 51.99 98.79 5.02 80.93 76.65 74.01 54.64 50.71 49.70 75.21 90.37 75.52
LMMG 73.92 98.57 14.70 81.79 78.40 78.78 54.66 51.00 51.93 75.80 71.75 76.31
LMMG,s 94.91 98.24 89.43 84.89 78.94 80.12 49.27 51.00 65.81 84.88 60.71 69.74

A
M

M
m

in

AMMEMM 85.12 99.45 69.43 49.97 56.98 70.19 61.39 55.73 43.10 87.86 87.71 40.80
AMMMM 89.81 99.01 15.74 83.73 77.39 80.67 52.85 75.27 58.19 89.68 84.91 68.36
AMMG 89.18 99.45 50.44 83.41 82.55 81.96 51.61 75.16 57.52 87.61 88.28 76.99
AMMG,s 89.24 99.57 3.28 81.18 78.53 81.96 52.03 75.16 53.98 89.93 83.54 52.13
AMM1 95.90 98.49 97.31 81.32 75.80 80.05 65.13 64.96 66.62 89.09 88.94 56.72

A
M

M
m

ax

AMMEMM 93.04 3.32 26.67 54.46 69.63 56.62 51.48 55.63 57.48 71.20 77.14 66.71
AMMMM 59.45 55.16 99.70 82.57 71.63 81.39 48.46 51.34 56.90 50.75 66.76 58.67
AMMG 95.50 65.32 99.30 82.75 72.16 81.39 50.58 47.27 34.29 48.32 67.54 77.46
AMMG,s 95.84 65.32 84.26 82.69 70.95 81.39 66.88 47.27 34.29 80.33 74.45 52.70
AMM1 95.01 73.48 1.29 75.22 67.52 77.67 66.70 61.16 71.94 57.97 81.07 53.42
Oracle 99.82 99.81 99.8 90.55 90.55 90.50 79.52 75.55 79.43 94.31 94.37 94.45

rithms. LMMG,s outperforms all one-shot algorithms. LMMG and LMMG,s are competitive with many
iterative algorithms, but lose against their AMM counterpart, which proves that additional optimiza-
tion over labels is beneficial. AMMG and AMMG,s are confirmed as the best variant of AMM, the
first being the best in this case. Surprisingly, all mean map algorithms, even one-shots, are clearly
superior to∝SVMs. Further results [19] reveal that∝SVM performances are dampened by learning
classifiers with the “inverted polarity” — i.e. flipping the sign of the classifier improves its perfor-
mances. Figure 1 (b, c) presents the AUC relative to the Oracle (which learns the classifier knowing
all labels and minimizing the logistic loss), as a function of the Gini entropy of bag assignment,
gini(S)

.
= 4Ej [π̂j(1 − π̂j)]. For an entropy close to 1, we were expecting a drop in performances.

The unexpected [19] is that on some domains, large entropies (≥ .8) do not prevent AMMmin to
compete with the Oracle. No such pattern clearly emerges for ∝SVM and AMMmax [19].
Big domains results We adopt a 1/5 hold-out method. Scalability results [19] display that every
method using vnc and ∝SVM are not scalable to big domains; in particular, the estimated time for a
single run of alter-∝SVM is >100 hours on the adult domain. Table 3 presents the results on the big
domains, distinguishing the feature used for bag assignment. Big domains confirm the efficiency of
LMM+AMM. No approach clearly outperforms the rest, although LMMG,s is often the best one-shot.
Synthesis Figure 1 (d) gives the AUCs of AMMmin

G over the Oracle for all domains [19], as a function
of the “degree of supervision”, n/m (=1 if the problem is fully supervised). Noticeably, on 90% of
the runs, AMMmin

G gets an AUC representing at least 70% of the Oracle’s. Results on big domains
can be remarkable: on the census domain with bag assignment on race, 5 proportions are sufficient
for an AUC 5 points below the Oracle’s — which learns with 200K labels.

4 Conclusion

In this paper, we have shown that efficient learning in the LLP setting is possible, for general loss
functions, via the mean operator and without resorting to the homogeneity assumption. Through its
estimation, the sufficiency allows one to resort to standard learning procedures for binary classifica-
tion, practically implementing a reduction between machine learning problems [27]; hence the mean
operator estimation may be a viable shortcut to tackle other weakly supervised settings [2] [3] [4]
[5]. Approximation results and generalization bounds are provided. Experiments display results that
are superior to the state of the art, with algorithms that scale to big domains at affordable computa-
tional costs. Performances sometimes compete with the Oracle’s — that learns knowing all labels
—, even on big domains. Such experimental finding poses severe implications on the reliability of
privacy-preserving aggregation techniques with simple group statistics like proportions.
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2 Supplementary Material on Proofs

2.1 Proof of Lemma 1

For any SPSL F (S, h), we can write it as ([2], Lemma 1, [3]):
F (S, h) = Fφ(S, h)

.
=

1

m

∑

i

Dφ(y′i‖φ′−1(h(xi))) , (1)

where y′i = 1 iff yi = 1 and 0 otherwise, φ is permissible and Dφ is the Bregman divergence with
generator φ [3]. It also holds that: Dφ(y′i‖φ′−1(h(xi))) = bφFφ(yh(x)) with:

Fφ(x)
.
=

φ?(−x) + φ(0)

φ(0)− φ(1/2)
= aφ +

φ?(−x)

bφ
, (2)

and φ? is the convex conjugate of φ, i.e. φ?(x)
.
= xφ′−1(x) − φ(φ′−1(x)). Furthermore, for any

permissible φ, the conjex conjugate φ?(x) verifies the property
φ?(−x) = φ?(x)− x , (3)

and so we get that:

F (S, h) =
1

m

∑

i

Dφ(y′i‖φ′−1(h(xi)))

=
bφ
m

∑

i

Fφ(yih(xi))

=
bφ
2m

(∑

i

Fφ(yih(xi)) +
∑

i

Fφ(yih(xi))

)

=
bφ
2m

(∑

i

Fφ(yih(xi)) +
∑

i

Fφ(−yih(xi))−
1

bφ

∑

i

yih(xi)

)
(4)

=
bφ
2m

∑

y∈{−1,+1}

∑

i

Fφ(yh(xi))−
1

2m

∑

i

yih(xi)

=
bφ
2m

∑

σ∈{−1,+1}

∑

i

Fφ(σh(xi))−
1

2
h

(
1

m

∑

i

yixi

)
(5)

=
bφ
2m

∑

σ∈{−1,+1}

∑

i

Fφ(σh(xi))−
1

2
h (µS) . (6)

(4) holds because of (3), (5) holds because h is linear. So for any samples S and S with respective
size m and m′, we have (again using the property that h is linear):

F (S, h)− F (S′, h) =
bφ
2

∑

σ∈{−1,+1}

(
1

m

∑

x∈S1

Fφ(σh(xi))−
1

m′
∑

x∈S2

Fφ(σh(xi))

)

+
1

2
h (µS2 − µS1) , (7)

which yields the statement of the Lemma.

2.2 Proof of Lemma 2

Using the fact that Dw and L are symmetric, we have:
∂`(L,X)

∂X

= −2
∂

∂X
tr
(

B>DwΠ>X
)

+
∂

∂X
tr
(

X>ΠDwΠ>X
)

+ γ
∂

∂X
tr
(

X>LX
)

= −2ΠDwB + 2ΠDwΠ>X + 2γLX = 0 ,

out of which B̃
± follows in Lemma 2.
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2.3 Proof of Theorem 3

We let Πo
.
= [DIAG(π̂)|DIAG(π̂−1)]>N an orthonormal system (njj = (π̂2

j +(1− π̂j)2)−1/2,∀j ∈
[n] and 0 otherwise). Let KΠo be the n-dim subspace of Rd generated by Πo. The proof of Theorem
(3) exploits the following Lemma, which assumes that ε is any > 0 real for L in (8) (main file) to be
� 0. When ε = 0, the result of Theorem (3) still holds but follows a different proof.

Lemma 1 Let A
.
= ΠDwΠ> and L defined as in (8) (main paper). Denote for short

U
.
=

(
L−1A + γ−1I

)−1
. (8)

Suppose there exists ξ > 0 such that for any x ∈ R2n, the projection of Ux in KΠo , xU,o, satisfies

‖xU,o‖2 ≤ ξ‖x‖2 . (9)

Then:

‖M − M̃‖F ≤ γξ‖B±‖F . (10)

Proof Combining Lemma 2 and (5), we get

B± − B̃
±

= −
(

(A + γL)
−1 A − I

)
B±

=
(
(γL)−1A + I

)−1
B± . (11)

Define the following permutation matrix:

C
.
=

[
0 | I
I | 0

]
∈ R2n×2n . (12)

A
.
= ΠDwΠ> is not invertible but diagonalisable. Its (orthonormal) eigenvectors can be partitioned

in two matrices Po and P such that:

Po
.
= [DIAG(π̂ − 1)|DIAG(π̂)]>N = CΠo ∈ R2n×n (eigenvalues 0) , (13)

P
.
= ΠN ∈ R2n×n (eigenvalues wj(π̂2

j + (1− π̂j)2),∀j) . (14)

We have:

M − M̃ = P>o CB± − P>o CB̃
±

= P>o C
(
(γL)−1A + I

)−1
B±

= Π>o
(
(γL)−1A + I

)−1
B± (15)

= γΠ>o
(

L−1A + γ−1I
)−1

B± . (16)

Eq. (15) follows from the fact that C is idempotent. Plugging Frobenius norm in (16), we obtain

‖M − M̃‖2F = γ2‖Π>o
(

L−1A + γ−1I
)−1

B±‖2F

= γ2
d∑

k=1

‖Π>o
(

L−1A + γ−1I
)−1

b±k ‖22

≤ γ2ξ2
d∑

k=1

‖b±k ‖22 (17)

= γ2ξ2‖B±‖2F ,

which yields (10). In (17), b±k denotes column k in B±. Ineq. (17) makes use of assumption (9).

To ensure ‖xU,o‖2 ≤ ξ‖x‖2, it is sufficient that ‖Ux‖2 ≤ ξ‖x‖2, and since ‖Ux‖2 ≤ ‖U‖F ‖x‖2,
it is sufficient to show that

∥∥∥U−1
ξ

∥∥∥
2

F
≤ 1 , (18)
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with Uξ
.
= L−1

ξ A + ξγ−1I, for relevant choices of ξ. We have let Lξ
.
= (1/ξ)L. Let 0 ≤ λ1(.) ≤

... ≤ λ2n(.) denote the ordered eigenvalues of a positive-semidefinite matrix in R2n×2n. It follows
that, since L is symmetric positive definite, we have

λj(L−1
ξ A) ≥ λj(A)

λ2n(Lξ)
(≥ 0) ,∀j ∈ [2n] .

We have used eq. (13). Weyl’s Theorem then brings:

λj(U−1
ξ ) ≤ λ2n(Lξ)

λj(A) + ξγ−1λ2n(Lξ)
≤
{

ξ−1γ if j ∈ [n]
λ2n(Lξ)
λj(A)

otherwise . (19)

Gershgorin’s Theorem brings λ2n ≤ (1/ξ)(ε + maxj
∑
j′ |ljj′ |), and furthermore the eigenvalues

of A satisfy λj ≥ wj/2,∀j ≥ n+ 1. We thus have:

∥∥∥U−1
ξ

∥∥∥
2

F
≤ nγ2

ξ2
+

4n
(
ε+ maxj

∑
j′ |ljj′ |

)2

ξ2 minj w2
j

. (20)

In (19) and (20), we have used the eigenvalues of A given in eqs (13) and (14). Assuming:

γ ≤ ξ√
2n

, (21)

a sufficient condition for the right-hand side of (20) to be ≤ 1 is that

ξ ≥
ε+ maxj

∑
j′ |ljj′ |

2
√
nminj wj

. (22)

To finish up the proof, recall that L = D − V with djj
.
=
∑
j,j′ vjj′ and the coordinates vjj′ ≥ 0.

Hence,

∑

j′

|ljj′ | = 2
∑

j 6=j′
vjj′

≤ 2nmax
j 6=j′

vjj′ ,∀j ∈ [n] .

The proof is finished by plugging this upperbound in (22) to choose ξ, then taking the maximal value
for γ in (21) and finally solving the upperbound in (10). This ends the proof of Theorem 3.

2.4 Proof of Lemma 4

We first consider the normalized association criterion in (10):

vNjj′
.
=

1

2

(
ASSOC(Sj , Sj)

ASSOC(Sj , Sj ∪ Sj′)
+

ASSOC(Sj′ , Sj′)

ASSOC(Sj′ , Sj ∪ Sj′)

)
,

ASSOC(Sj , Sj′)
.
=

∑

x∈Sj ,x′∈Sj′
‖x− x′‖22 . (23)
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Remark that

‖bj − bj′‖22 =

∥∥∥∥∥∥
1

mj

∑

xi∈Sj
xi −

1

mj′

∑

xi′∈Sj′
xi′

∥∥∥∥∥∥

2

2

=
1

m2
j

∥∥∥∥∥∥
∑

xi∈Sj
xi

∥∥∥∥∥∥

2

2

+
1

m2
j′

∥∥∥∥∥∥
∑

xi′∈Sj′
xi′

∥∥∥∥∥∥

2

2

− 2

mjmj′


 ∑

xi∈Sj
xi



>
 ∑

xi′∈Sj′
xi′




=
1

m2
j

∥∥∥∥∥∥
∑

xi∈Sj
xi

∥∥∥∥∥∥

2

2

+
1

m2
j′

∥∥∥∥∥∥
∑

xi′∈Sj′
xi′

∥∥∥∥∥∥

2

2

− 2

mjmj′

∑

xi∈Sj ,xi′∈Sj′
x>i xi′

≤ 1

mj

∑

xi∈Sj
‖xi‖22 +

1

mj′

∑

xi′∈Sj′
‖xi′‖22 −

2

mjmj′

∑

xi∈Sj ,xi′∈Sj′
x>i xi′ (24)

=
1

mjmj′

∑

xi∈Sj ,xi′∈Sj′
‖xi − xi′‖22

+
mj′ − 1

mjmj′

∑

xi∈Sj
‖xi‖22 +

mj − 1

mjmj′

∑

xi′∈Sj′
‖xi′‖22 −

1

mjmj′

∑

xi∈Sj ,xi′∈Sj′
x>i xi′

︸ ︷︷ ︸
.
=a

≤ 2

mjmj′

∑

xi∈Sj ,xi′∈Sj′
‖xi − xi′‖22 (25)

=
2

mjmj′
ASSOC(Sj , Sj′) . (26)

Eq. (24) exploits the fact that
(∑n

j=1 aj

)2

≤ n
(∑n

j=1 a
2
j

)
and eq. (25) exploits the fact that

a ≤ (mjmj′)
−1
∑
xi∈Sj ,xi′∈Sj′ ‖xi − xi′‖

2
2. We thus have:

ASSOC(Sj , Sj)

ASSOC(Sj , Sj ∪ Sj′)
=

ASSOC(Sj , Sj)

ASSOC(Sj , Sj) + ASSOC(Sj , Sj′)

≤ ASSOC(Sj , Sj)

ASSOC(Sj , Sj) +
mjmj′

2 ‖bj − bj′‖22
(27)

≤ κ′mj

κ′mj +
mjmj′

2 ‖bj − bj′‖22
(28)

=
1

1 +
mj′
2κ′ ‖bj − bj′‖22

. (29)
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Eq. (27) uses (26) and eq. (28) uses assumption (D2). Eq. (28) also holds when permuting j and j′,
so we get:

ς(VNC , B±) ≤ max
j 6=j′

(
ε

2n
+

1

1 +
mj
2κ′ ‖bj − bj′‖22

+
1

1 +
mj′
2κ′ ‖bj − bj′‖22

)2

‖B±‖F

≤
(
ε

2n
+

1

1 +
minj mj

2κ′ minj,j′ ‖bj − bj′‖22

)2

‖B±‖F

≤


 ε2

2n2
+ 2

(
1

1 +
minj mj

2κ′ minj,j′ ‖bj − bj′‖22

)2

 ‖B±‖F (30)

≤ ε2

2n2
dmax

σ,j
‖bσj ‖2 +

4κ′dmaxσ,j ‖bσj ‖2
min2

j,j′ ‖bj − bj′‖22

≤ ε2

2n2
dmax

σ,j
‖bσj ‖2 +

4κ′d
κ2 maxσ,j ‖bσj ‖2

= fNC
(

max
σ,j
‖bσj ‖2

)

= o(1) , (31)

where the last inequality uses assumption (D1), and (30) uses the property that (a+b)2 ≤ 2a2 +2b2.
We have let

fNC(x)
.
=

ε2

2n2
dx+

4κ′d
κx

, (32)

which is indeed o(1) if ε = o(n2/
√
x). This proves the Lemma for ς(VNC , B±). The case of

ς(VG,s, B±) is easier, as

exp

(
−‖bj − bj′‖2

s

)
≤ exp

(
−minj′′,j′′′ ‖bj′′ − bj′′′‖2

s

)

≤ exp

(
−κ
s

max
σ,j
‖bσj ‖2

)
,

from assumption (D1) alone, which gives

ς(VG,s, B±) ≤ ‖B±‖F
(
ε

2n
+ exp

(
−κ
s

max
σ,j
‖bσj ‖2

))2

≤ ‖B±‖F
(
ε2

2n2
+ 2 exp

(
−2κ

s
max
σ,j
‖bσj ‖2

))

≤ dmax
σ,j
‖bσj ‖2

(
ε2

2n2
+ 2 exp

(
−2κ

s
max
σ,j
‖bσj ‖2

))

= fG
(

max
σ,j
‖bσj ‖2

)

= o(1) , (33)

as claimed. We have let fG(x)
.
= ε2

2n2 dx+dx exp(−2κx/s), which is indeed o(1) if ε = o(n2/
√
x).

Remark that we shall have in general fG(x) ≤ fNC(x) and even fG(x) = o(fNC(x)) if ε = 0, so
we may expect better convergence in the case of VG,s as maxσ,j ‖bσj ‖2 grows.

2.5 Proof of Lemma 5

We first restate the Lemma in a more explicit way, that shall provide explicit values for κl and κn.

Lemma 2 There exist κjj′ and sjj′ depending on dj , dj′ , and κ′jj′ > 1 depending onmj ,mj′ , such
that:
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• If v
G,sjj′
jj′ > exp(−1/4) then Sj , Sj′ are not linearly separable;

• If v
G,sjj′
jj′ < exp(−64) then Sj , Sj′ are linearly separable;

• If vNCjj′ > κjj′ then Sj , Sj′ are not linearly separable;

• If vNCjj′ < κjj′/κ
′
jj′ then Sj , Sj′ are linearly separable.

Proof We first consider the normalized association criterion in (10), and we prove the Lemma for
the following expressions of κjj′ and κ′jj′ :

κjj′
.
=

16

2 +
d2
jj′

2d2
j′

+
16

2 +
d2
jj′

2d2j

, (34)

κ′jj′
.
= 512 max{mj ,mj′} , (35)

with djj′
.
= max{dj , dj′} and dj

.
= maxx,x′∈Sj ‖x− x′‖2, ∀j 6= j′ ∈ [n]. For any bag Sj , we let

(b?j , rj)
.
= MEB(Sj) denote the minimum enclosing ball (MEB) for bag Sj and distance L2, that

is, rj is the smallest unique real such that

∃!b?j : d(x, b?j )
.
= ‖x− b?j‖2 ≤ rj ,∀x ∈ Sj .

We have let d(x, b?j )
.
= ‖x−b?j‖2. We are going to prove a first result involving the MEBs of Sj and

Sj′ , and then will translate the result to the Lemma’s statement. The following properties follows
from standard properties of MEBs and the fact that d(., .) is a distance (they hold for any j 6= j′):

(a) d(x,x′) ≤ 2rj ,∀x,x′ ∈ Sj ;
(b) If bags Sj and Sj′ are linearly separable, then ∀x ∈ CO(Sj), ∃x′ ∈ Sj′ such that d(x,x′) ≥

max{rj , rj′}; here, “CO” denotes the convex closure;
(c) If bags Sj and Sj′ are linearly separable, then d(bj , bj′) ≥ max{rj , rj′}, where bj and bj′

are the bags average;
(d) ∀x ∈ Sj ,∃x′ ∈ Sj s.t. d(x,x′) ≥ rj ;
(e) d(x,x′) ≤ 2 max{rj , rj′}+ d(b?j , b

?
j′),∀x ∈ CO(Sj),∀x′ ∈ CO(Sj′).

Let us define

ASSOC(Sj , Sj′)
.
=

∑

x∈Sj ,x′∈Sj′
d2(x,x′) . (36)

We remark that, assuming that each bag contains at least two elements without loss of generality:

vNCjj′ =
1

2


 1

1 +
ASSOC(Bj ,Bj′ )
ASSOC(Bj ,Bj)

+
1

1 +
ASSOC(Bj ,Bj′ )
ASSOC(Bj′ ,Bj′ )


 . (37)

We have ASSOC(Sj , Sj) ≤ 4mjr
2
j and ASSOC(Sj′ , Sj′) ≤ 4mj′r

2
j′ (because of (a)), and also

ASSOC(Sj , Sj′) ≥ max{mj ,mj′}max{r2
j , r

2
j′} when Sj and Sj′ are linearly separable (because

of (b)), which yields in this case

vNCjj′ ≤ 1

2 +
max{mj ,mj′}max{r2j ,r2j′}

2mjr2j

+
1

2 +
max{mj ,mj′}max{r2j ,r2j′}

2mj′r
2
j′

≤ 1

2 +
max{r2j ,r2j′}

2r2j

+
1

2 +
max{r2j ,r2j′}

2r2
j′

. (38)

Let us name κ◦jj′ the right-hand side of (38). It follows that when vNCjj′ > κ◦jj′ , Sj and Sj′ are not
linearly separable.
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On the other hand, we have ASSOC(Sj , Sj) ≥ mjr
2
j and ASSOC(Sj′ , Sj′) ≥ mj′r

2
j′ (because of (d)),

and also
ASSOC(Sj , Sj′) ≤ mjmj′(2 max{rj , rj′}+ d(b?j , b

?
j′))

2

≤ mjmj′(4 max{r2
j , r

2
j′}+ 2d2(b?j , b

?
j′)) , (39)

because of (e) and the fact that (a+ b)2 ≤ 2a2 + 2b2. It follows that ∀j 6= j′:

vNCjj′ ≥ 1

2 +
2mj′ (4 max{r2j ,r2j′}+2d2(b?j ,b

?
j′ ))

r2j

+
1

2 +
2mj(4 max{r2j ,r2j′}+2d2(b?j ,b

?
j′ ))

r2
j′

. (40)

For any j 6= j′, when d2(b?j , b
?
j′) ≤ 4 max{r2

j , r
2
j′}, then we have from (40):

vNCjj′ ≥ 1

2 +
16mj′ max{r2j ,r2j′}

r2j

+
1

2 +
16mj max{r2j ,r2j′}

r2
j′

> κ◦jj′/(32 max{mj ,mj′}) . (41)

Hence, when vNCjj′ ≤ κ◦jj′/(32 max{mj ,mj′}), it implies d(b?j , b
?
j′) > 2 max{rj , rj′}, implying

d(b?j , b
?
j′) > rj + rj′ , which is a sufficient condition for the linear separability of Sj and Sj′ .

So, we can relate the linear separability of Sj and Sj′ to the value of vNCjj′ with respect to κ◦jj′ defined
in (38). To remove the dependence in the MEB parameters and obtain the statement of the Lemma,
we just have to remark that d2

j/4 ≤ r2
j ≤ 4d2

j ,∀j ∈ [n], which yields κjj′/16 ≤ κ◦jj′ ≤ κjj′ .
Hence, when vNCjj′ > κjj′ , it follows that vNCjj′ > κ◦jj′ and Sj and Sj′ are not linearly sep-
arable. On the other hand, when vNCjj′ ≤ κjj′/(16 × 32 max{mj ,mj′}) = κjj′/κ

′
jj′ , then

vNCjj′ ≤ κ◦jj′/(32 max{mj ,mj′}) and the bags Sj and Sj′ are linearly separable. This achieves the
proof of Lemma 5 for the normalized association criterion in (10).

The proof for vG,sjj′ is shorter, and we prove it for
sj,j′ = max{dj , dj′} . (42)

We have (1/2) max{dj , dj′} ≤ max{rj , rj′} ≤ 2 max{dj , dj′}. Hence, because of (c) above,
if Sj and Sj′ are linearly separable, then vG,sjj′ ≤ 1/e1/4; so, when vG,sjj′ > 1/e1/4, the two bags
are not linearly separable. On the other hand, if d(b?j , b

?
j′) ≤ 2 max{rj , rj′}, then because of (e)

above d(bj , bj′) ≤ 4 max{rj , rj′} ≤ 8 max{dj , dj′}, and so vG,sjj′ ≥ 1/e64. This implies that if
vG,sjj′ < 1/e64, then d(b?j , b

?
j′) > 2 max{rj , rj′} ≥ rj + rj′ , and thus the two bags are linearly

separable, as claimed.

This achieves the proof of Lemma 2.

This achieves the proof of Lemma 5.

2.6 Mean Map estimator’s Lemma and Proof

It is not hard to check that the randomized procedure that builds µ̃RAND
S

.
= yx for some random x ∈ S

and y ∈ {−1, 1} guarantees O(2 + γ) approximability when some bags are close to the convex hull
of S, for small γ > 0. Hence, the Mean Map estimation of µS can be very poor in that respect.

Lemma 3 For any γ > 0, the Mean Map estimator µ̃MM
S cannot guarantee ‖µ̃MM

S −
µS‖2/maxσ,j ‖bσj ‖2 ≤ 2− γ, even when (D1 + D2) hold.

Proof Let x > 0, ε ∈ (0, 1), p ∈ (0, 1), p 6= 1/2. We create a dataset from four observations,
{(x1 = 0, 1), (x2 = 0,−1), (x3 = x, 1), (x4 = x,−1)}. There are two bags, S1 takes 1 − ε of x2

and ε of x1. S2 takes ε of x4 and 1− ε of x3. The label-wise estimators µ̃σ of [4] are solution of
[

µ̃1

µ̃−1

]
=

([
1− ε ε
ε 1− ε

]> [
1− ε ε
ε 1− ε

])−1 [
1− ε ε
ε 1− ε

]> [
x
0

]

=
1

1− 2ε

[
(1− ε)x
εx

]
(43)
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On the other hand, the true quantities are:[
µ1

µ−1

]
=

[
(1− ε)x
εx

]
. (44)

We now mix classes in S and pick bag proportions q .
= PS[S1] and 1 − q = PS[S2]. We have the

class proportions defined by PS[y = +1] = εq + (1− ε)(1− q) .
= p. Then

|µ̃S − µS| =

∣∣∣∣p(1− ε)
(

1

1− 2ε
− 1

)
x− (1− p)ε

(
1

1− 2ε
− 1

)
x

∣∣∣∣

=
2ε|p− ε|
1− 2ε

x

= 2ε(1− q)x . (45)
Furthermore, maxi |bσi | = x. We get

|µ̃S − µS|
maxi |bσi |

= 2ε(1− q) . (46)

Picking ε and (1 − q) both >
√

1− (γ/2) is sufficient to have eq. (46) > 2 − γ for any γ > 0.
Remark that both assumptions (D1) and (D2) hold for any κ < 1 and any κ′ > 0.

2.7 Proof of Theorem 6

The proof of the Theorem involves two Lemmata, the first of which is of independent interest and
holds for any convex twice differentiable function F , and not just any Fφ. So, let us define:

F (S|y,θ,µ) =
b

2m

(∑

i

∑

σ

F (σθ>xi)

)
− 1

2
θ>µ . (47)

where b is any fixed positive real. Define also the regularized loss:
F (S|y,θ,µ, λ)

.
= F (S|y,θ,µ) + λ‖θ‖22 . (48)

Let fk ∈ Rm denote the vector encoding the kth variable in S : fki = xik. For any k ∈ [d], let

f̃k
.
=

(
d∑

k ‖fk‖22

) d−1
2d

fk (49)

denote a normalization of vectors fk in the sense that

1

d

∑

k

‖f̃k‖22 =
1

d

(
d∑

k ‖fk‖22

)1− 1
d ∑

k

‖fk‖22

=

(
1

d

∑

k

‖fk‖22

) 1
d

. (50)

Let Ṽ collect all vectors f̃k in column and V collect all vectors fk in column. Without loss of
generality, we assume V>V � 0, i.e. V>V positive definite (i.e. no feature is a linear combination
of the others), implying, because the columns of Ṽ are just positive rescaling of the columns of V,
that Ṽ

>
Ṽ � 0 as well. We use V instead of F as in the main paper, in order not to counfound with

the general convex surrogate notation F that we use here.

Lemma 4 Given any two µ and µ′, let θ∗ and θ′∗ be the respective minimizers of F (S|y, .,µ, λ)
and F (S|y, .,µ′, λ). Suppose there exists F ′′◦ > 0 such that surrogate F satisfies

F ′′(±(αθ∗ + (1− α)θ′∗)
>xi) ≥ F ′′◦ ,∀α ∈ [0, 1],∀i ∈ [m] . (51)

Then the following holds:

‖θ∗ − θ′∗‖2 ≤ 1

2λ+ 2
emF

′′◦ vol2(Ṽ)
‖µ− µ′‖2 , (52)

where vol(Ṽ)
.
=
√

det Ṽ
>

Ṽ denote the volume of the (row/column) system of Ṽ.
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Proof Our proof begins following the same first steps as the proof of Lemma 17 in [5], adding the
steps that handle the lowerbound on F ′′. Consider the following auxiliary function AF (τ ):

AF (τ )
.
=

(
∇F (S|y,θ∗,µ)−∇F (S|y,θ

′
∗,µ

′)
)>

(τ − θ′∗) + λ‖τ − θ′∗‖22 , (53)

where the gradient∇ of F is computed with respect to parameter θ. The gradient of AF (.) is:

∇AF (τ ) = ∇F (S|y,θ∗,µ)−∇F (S|y,θ
′
∗,µ

′) + 2λ(τ − θ′∗) , (54)

The gradient of AF satisfies

∇AF (θ∗) = ∇F (S|y,θ∗,µ, λ)−∇F (S|y,θ
′
∗,µ

′, λ)

= 0 , (55)

as both gradients in the right are 0 because of the optimality of θ∗ and θ′∗ with respect to
F (S|y, .,µ, λ) and F (S|y, .,µ′, λ). The Hessian H of AF is HAF (τ ) = 2λI � 0 and so AF is
convex and is thus minimal at τ = θ∗. Finally, AF (θ′∗) = 0. It comes thus AF (θ∗) ≤ 0, which
yields equivalently:

0 ≥
(
∇F (S|y,θ∗,µ)−∇F (S|y,θ

′
∗,µ

′)
)>

(θ∗ − θ′∗) + λ‖θ∗ − θ′∗‖22

=

(
b

2m

∑

y

∑

i

∇F (yθ>∗ xi)−
1

2
µ− b

2m

∑

y

∑

i

∇F (yθ′>∗ xi) +
1

2
µ′
)>

(θ∗ − θ′∗)

+λ‖θ∗ − θ′∗‖22

=
b

2m

(∑

y

∑

i

∇F (yθ>∗ xi)−
∑

y

∑

i

∇F (yθ′>∗ xi)

)>
(θ∗ − θ′∗)

︸ ︷︷ ︸
.
=a

−1

2
(µ− µ′)> (θ∗ − θ′∗) + λ‖θ∗ − θ′∗‖22 . (56)

Let us lowerbound a. We have∇F (yθ>∗ x) = yF ′(yθ>∗ x)x, and a Taylor expansion brings that for
any θ∗,θ′∗, there exists some α ∈ [0, 1] such that, defining

uα,i
.
= y(αθ∗ + (1− α)θ′∗)

>xi , (57)

we have:

F ′(yθ>∗ xi) = F ′(yθ′>∗ xi) + y(θ∗ − θ′∗)>xiF ′′(uα,i) . (58)

We thus get:

a =

(∑

y

∑

i

∇F (yθ>∗ xi)−
∑

y

∑

i

∇F (yθ′>∗ xi)

)>
(θ∗ − θ′∗)

=

(∑

y

∑

i

y(F ′(yθ>∗ xi)− F ′(yθ′>∗ xi))xi
)>

(θ∗ − θ′∗)

=

(∑

y

∑

i

(θ∗ − θ′∗)>xiF ′′(uα,i)xi
)>

(θ∗ − θ′∗)

= 2
∑

i

((θ∗ − θ′∗)>xi)2F ′′(uα,i)

≥ 2F ′′◦
∑

i

((θ∗ − θ′∗)>xi)2 (59)

= 2F ′′◦ (θ∗ − θ′∗)>SS>(θ∗ − θ′∗) , (60)

where matrix S ∈ Rd×m is formed by the observations of S|y in columns, and ineq. (59) comes from
(51). Define T

.
= (d/

∑
i ‖xi‖22)SS>. Its trace satisfies tr (T) = d. Let λd ≥ λd−1 ≥ ... ≥ λ1 > 0
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denote eigenvalues of T, with λ1 strictly positive because SS> = V>V � 0. The AGH inequality
brings:

d∏

2

λk ≤
(

1

d− 1

d∑

k=2

λk

)d−1

(61)

=

(
tr (T)− λ1

d− 1

)d−1

=

(
d− λ1

d− 1

)d−1

≤
(

d

d− 1

)d−1

. (62)

Multiplying both side by λ1 and rearranging yields:

λ1 ≥
(
d− 1

d

)d−1

det T (63)

Let λ◦ > 0 denote the minimal eigenvalue of SS>. It satisfies λ◦ = (
∑
i ‖xi‖22/d)λ1 and thus it

comes from ineq. (63):

λ◦ ≥
(
d− 1

d

)d−1(
d∑

i ‖xi‖22

)d−1

det SS>

=

(
d− 1

d

)d−1

det

[(
d∑

i ‖xi‖22

)1− 1
d

SS>
]

=

(
d− 1

d

)d−1

det Ṽ
>

Ṽ (64)

=

(
d− 1

d

)d−1

vol2(Ṽ) (65)

≥ 1

e
vol2(Ṽ) . (66)

We have used notation vol(Ṽ)
.
=
√

det Ṽ
>

Ṽ. Since (θ∗ − θ′∗)>SS>(θ∗ − θ′∗) ≥ λ◦‖θ∗ − θ′∗‖22,
combining (60) with (66) yields the following lowerbound on a:

a ≥ 2

e
F ′′◦ vol2(Ṽ)‖θ∗ − θ′∗‖22 . (67)

Going back to (56), we get

λ‖θ∗ − θ′∗‖22 −
1

2
(µ− µ′)> (θ∗ − θ′∗) +

b

em
F ′′◦ vol2(Ṽ)‖θ∗ − θ′∗‖22 ≤ 0 .

Since (µ− µ′)> (θ∗ − θ′∗) ≤ ‖µ − µ′‖2‖θ∗ − θ′∗‖2, we get after chaining the inequalities and
solving for ‖θ∗ − θ′∗‖2:

‖θ∗ − θ′∗‖2 ≤ 1

2λ+ 2
emF

′′◦ vol2(Ṽ)
‖µ− µ′‖2 ,

as claimed.

The second Lemma is used to (51) when F (x) = Fφ. Notice that we cannot rely on strong
convexity arguments on Fφ, as this do not hold in general. The Lemma is stated in a more general
setting than for just F = Fφ.
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Lemma 5 Fix λ, b > 0, and let x∗
.
= maxi ‖xi‖2. Suppose that ‖µ‖2 ≤ µ∗ for some µ > 0. Let

F (S|y,θ,µ, λ) =
b

2m

(∑

i

∑

σ

F (σθ>xi)

)
− 1

2
θ>µ+ λ‖θ‖22 , (68)

and let θ∗
.
= arg minθ F (S|y,θ,µ, λ). Suppose that F (.) is L-Lipschitz. Then

‖θ∗‖2 ≤ bLx∗ + µ∗
λ

. (69)

Proof Let us define a shrinking of the optimal solution θ∗, θα
.
= αθ∗ for α ∈ (0, 1). We have

F (S|y,θα,µ, λ) =
b

2m

(∑

i

∑

σ

F (σθ>αxi)

)
− 1

2
θ>αµ+ λ‖θα‖22

=
b

2m

(∑

i

∑

σ

F (σαθ>∗ xi)

)
− α

2
θ>∗ µ+ λα2‖θ∗‖22

≤ b

2m

(∑

i

∑

σ

F (σθ>∗ xi) + L
∣∣σαθ>∗ xi − σθ>∗ xi

∣∣
)

+−α
2
θ>∗ µ

+λα2‖θ∗‖22 (70)

=
b

2m

(∑

i

∑

σ

F (σθ>∗ xi)

)
+
bK(1− α)

m

∑

i

|θ>∗ xi| −
α

2
θ>∗ µ

+λα2‖θ∗‖22 , (71)

where (70) holds because F is L-Lipschitz. To have eq. (71) smaller than F (S|y,θ∗,µ, λ), we need
equivalently:

bL(1− α)

m

∑

i

|θ>∗ xi| −
α

2
θ>∗ µ+ λα2‖θ∗‖22 ≤ −1

2
θ>∗ µ+ λ‖θ∗‖22 ,

that is:
bL(1− α)

m

∑

i

|θ>∗ xi|+
1− α

2
θ>∗ µ ≤ λ(1− α2)‖θ∗‖22 ,

and to find an α ∈ (0, 1) such that this holds, because of Cauchy-Schwartz inequality, it is sufficient
that (1− α)(bLx∗ + µ) ≤ λ(1− α2)‖θ∗‖2, i.e.:

‖θ∗‖2 ≥ bLx∗ + ‖µ‖2
λ(1 + α)

.

Hence, whenever ‖θ∗‖2 > (bLx∗+‖µ‖2)/λ, there is a shrinking of the optimal solution to eq. (68)
that further decreases the risk, thus contradicting its optimality. This ends the proof of Lemma 5.

Notice that Lemma 5 does not require F (x) to be convex, nor differentiable. To use this Lemma,
remark that for any Fφ,

F ′φ(x) = − 1

bφ
(φ?)′(−x) = − 1

bφ
(φ′)−1(−x) ∈ [−1/bφ, 0] , (72)

for any x ∈ φ′([0, 1]) [2], and thus Fφ is 1/bφ-Lipschitz. Finally, considering (51), for any α ∈ [0, 1]

| ± (αθ∗ + (1− α)θ′∗)
>xi| ≤ (α‖θ∗‖2 + (1− α)‖θ′∗‖2)x∗

≤ x∗ + α‖µ‖2 + (1− α)‖µ′‖2
λ

(73)

≤ x∗ + max{‖µ‖2, ‖µ′‖2}
λ

, (74)

where ineq. (73) uses Lemma 5 with b = 1/K = bφ. µ and µ′ are the parameters of F (S|y, .,µ, λ)
and F (S|y, .,µ′, λ) in Lemma 4.

12



Algorithm 1 Label Assignation (LA)

Input θ ∈ Rd, a bag B = {xi ∈ Rd, i = 1, 2, ...,m}, bag size m+ ∈ [m];
If B = ∅ then stop
Else if m+ 6∈ (m) then yi ← I(m+ = m)− I(m+ = 0),∀i = 1, 2, ...,m
Else

Step 1 : i∗ ← arg maxi |θ>xi|
Step 2 : yi∗ ← sign(θ>xi∗)
Step 3 : LA(θ,B\{xi∗},m+ − I(yi∗ = 1))

Now, going back to the parameters of Theorem 6, we make the change µ → µS and µ′ → µ̃S and
obtain the statement of the Theorem for interval

I = [±(x∗ + max{‖µS‖2, ‖µ̃S‖2})] . (75)

This achieves the proof of Theorem 6.

2.8 Proof of Lemma 7

We make the proof for optimization strategy OPT = min. The case OPT = max flips the choice
of the label in Step 2. To minimize Fφ(S|y,θt,µS(σ)) over σ ∈ Σπ̂ , we just have to find σ∗ ∈
arg maxσ∈Σπ̂

θ>
∑
i σixi, and we can do that bag-wise. Algorithm 1 presents the labeling (notation

(m)
.
= {1, 2, ...,m− 1}). Remark that the time complexity for one bag is O(mj logmj) due to the

ordering (Step 1), so the overall complexity is indeed O(mmaxi logmi).

Lemma 6 Let σ∗
.
= {σ∗1 , σ∗2 , ..., σ∗m} be the set of labels obtained after running LA(θ, Sj ,m+

j ) for
j = 1, 2, ..., n. Then σ∗ ∈ arg maxσ∈Σπ̂

θ>
∑
i σixi.

Proof The total edge, θ>
∑
i σixi (for anyσ ∈ Σπ̂), can be summable bag-wise wrt the coordinates

of σ. Consider thus the optimal set {σ?}B .
= arg maxσ∈{−1,1}m′ :1>σ=2m+−m′ θ

>∑
xi∈B σixi,

for some bag B = {xi, i = 1, 2, ...,m′}, with constraint m+ ∈ [m′]. This set contains the label
assignment σ∗ returned by LA(θ,B,m+), a property that follows from two simple observations:

P1 Consider any observation xi of bag B; for any optimal labeling σ? of B, let m′+ .
= m+ −

I(σ?i = 1). Define the set {σ′?}i of optimal labelings of B\{xi} with constraint m′+ .
=

m+ − I(σ?i = 1). Then this set coincides with the set created by taking the elements of
{σ?}B to which we drop coordinate i. This follows from the per-observation summability
of the total edge wrt labels.

P2 Assume m+ ∈ (m′). ∀i∗ ∈ arg maxi |θ>xi|, there exists an optimal assignment σ? such
that σ?i∗ = sign(θ>xi∗). Otherwise, starting from any optimal assignment σ?, we can
flip the label of xi∗ and the label of any other xi for which σ?i 6= σ?i∗ , and get a label
assignment that satisfies constraint m+ and cannot be worse than σ?, and is thus optimal,
a contradiction.

Hence, LA(θ,B,m+) picks at each iteration a label that matches one in a subset of optimal
labelings, and the recursive call preserves the subset of optimal labelings. Since when m+ 6∈ (m)
the solution returned by LA(θ,B,m+) is obviously optimal, we end up when the current B is empty
with σ∗ ∈ arg maxσ∈Σπ̂

θ>
∑
i σixi, as claimed.

2.9 Proof of Theorem 8

We prove separately Eqs (14) and (15).
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2.9.1 Proof of eq. (14)

Notations : unless explicitly stated, all samples like S and S′ are of size m. To make the reading
of our expectations clear and simple, we shall write ED for E(x,y)∼D, EΣm for Eσ∼Σm , ES for
E(x,y)∼S, ED′m for ES′∼D and EDm

for ES∼D.

We now proceed to the proof, that follows the same main steps as that of Theorem 5 in [6]. For any
q ∈ [0, 1], let us define the convex combination:

Fφ(q, h(x))
.
= qFφ(h(x)) + (1− q)Fφ(−h(x)) . (76)

It follows that

EΣπ̂
ES[Fφ(σ(x)h(x))] = ES[Fφ(π̂(x), h(x))] , (77)

with π̂(x) the label proportion of the bag to which x belongs in S. We also have ∀h,

ED[Fφ(yh(x))] ≤ ES[Fφ(π̂(x), h(x))] + Λ(S) , (78)

with

Λ(S)
.
= sup

g
{ED[Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]} . (79)

Let us bound the deviations of Λ(S) around its expectation on the sampling of S, using the indepen-
dent bounded differences inequality (IBDI, [7]). for which we need to upperbound the maximum
difference for the supremum term computed over two samples S and S′ of the same size, such that
S′ is S with one example replaced. We have:

|Λ(S)− Λ(S′)| ≤ |ES[Fφ(π̂(x), g(x))]− ES′ [Fφ(π̂′(x), g(x))]| , (80)

with π̂ and π̂′ denoting the corresponding label proportions in S and S′. Let {x1} = S\S′ and
{x2} = S′\S. Let x1 ∈ Sj and x2 ∈ S′j′ for some bags j and j′. Upperbound (80) depends only on
bags j and j′. For any x ∈ (Sj ∪ Sj′)\{x1,x2}, eqs. (2) and (3) bring:

Fφ(π̂(x), g(x))− Fφ(π̂′(x), g(x)) ≤ |Fφ(g(x))− Fφ(−g(x))|
m(x)

=
|g(x)|
bφm(x)

(81)

≤ h∗
bφm(x)

, (82)

where m(x) is the size of the bag to which it belongs in S, plus 1 iff it is bag j′ and j′ 6= j, minus 1
iff it is bag j and j′ 6= j. Furthermore, (2) and (3) also bring:

Fφ(π̂(x), g(x)) = Fφ(|g(x)|) +
1

bφ
((1− π̂(x))1g(x)>0 + π̂(x)(1− 1g(x)>0))|g(x)|

≤ Fφ(0) +
1

bφ
((1− π̂(x))1g(x)>0 + π̂(x)(1− 1g(x)>0))h∗

≤ Fφ(0) +
h∗

bφ
,∀x ∈ S .

Also, it comes from its definition that:

Fφ(0) =
1

bφ
(0φ′−1(0)− φ(φ′−1(0)))

=
−φ(1/2)

bφ
= 1 . (83)

We obtain that:

|Λ(S)− Λ(S′)| ≤ 1

m

(
1 +

h∗

bφ
+ 1 +

h∗

bφ

)
+

1

m

∑

x∈(Sj∪Sj′ )\{x1,x2}

h∗
bφm(x)

≤ Q1

m
, (84)
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where

Q1
.
= 2

(
2h∗
bφ

+ 1

)
. (85)

So the IBDI yields that with probability ≤ δ/2 over the sampling of S,

Λ(S) ≥ EDm
sup
g
{ED[Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]}+Q1

√
1

2m
log

2

δ
, (86)

We now upperbound the expectation in (86). Using the convexity of the supremum, we have

EDm
sup
g
{ED[Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]}

= EDm
sup
g

{
ED′m [Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]

}

≤ EDm,D′m sup
g
{ES′ [Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]} . (87)

Consider any set S ∼ D2m, and let I/2 ⊆ [2m] be a subset of m indices, picked uniformly at random
among all

(
2m
m

)
possible choices. For any I ⊆ [2m], let S(I) denote the subset of examples whose

index matches I, and for any x ∈ S(I), let π̂(x|S(I)) denote its bag proportion in S(I). For any I/2
l

indexed by l ≥ 1 and any x ∈ S, let:

π̂s|l(x)
.
=

{
π̂(x|S(I/2

l )) if x ∈ S(I/2
l )

π̂(x|S\S(I/2
l )) otherwise (88)

denote the label proportions induced by the split of S in two subsamples S(I/2
l ) and S\S(I/2

l ). Let

π̂`|l(x)
.
=

{
y if x ∈ S(I/2

l )
π̂(x|S\S(I/2

l )) otherwise , (89)

where y is the true label of x. Let σl(x)
.
= 2 × 1x∈S(I/2

l ) − 1. The Label Proportion Complexity
(LPC) L2m quantifies the discrepance between these two estimators. When each bag in S has label
proportion zero or one, each term factoring classifier h in eq. (13) (main file) is zero, so L2m = 0.

Lemma 7 The following holds true:

EDm,D′m sup
g
{ES′ [Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]}

≤ 2EDm,Σm sup
h
{ES[σ(x)Fφ(π̂(x), h(x))]}+ L2m . (90)

Proof For any σ ∈ Σm and any sets S = {x1,x2, ...,xm} and S′ = {x′1,x′2, ...,x′m}of size m,
denote

Sσ
.
= {x′i iff σi = 1,xi otherwise} ,

Sσ
.
= {x′i iff σi = −1,xi otherwise} = (S ∪ S′)\Sσ . (91)

and

π̂∗(x)
.
=

{
π̂σ(x) if x ∈ Sσ ,
π̂σ(x) otherwise , (92)

where π̂σ(.) denote the label proportions in Sσ and π̂σ(.) denote the label proportions in Sσ . Let
π̂(.) denote the label proportions in S, π̂′(.) denote the label proportions in S′ (we know each bag to
which each example in S′ belongs to, so we can compute these estimators), We have

EDm,D′m sup
h
{ES′ [Fφ(yh(x))]− ES[Fφ(π̂(x), h(x))]}

= EDm,D′m sup
h

{
ES′ [Fφ(π̂′(x), h(x))]− ES[Fφ(π̂(x), h(x))]− 1

bφ
×∆1

}

= EDm,D′m sup
h

{
ESσ [σ(x)Fφ(π̂l(x), h(x))]− ESσ

[σ(x)Fφ(π̂r(x), h(x))]− 1

bφ
×∆1

}
,(93)
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with
∆1

.
= ES′ [((1− π̂′(x))1y=1 − π̂′(x)1y=−1)h(x)] ; (94)

π̂l(x)
.
=

1

2
((1 + σ(x))π̂′(x) + (1− σ(x))π̂(x)) ,

π̂r(x)
.
=

1

2
((1 + σ(x))π̂(x) + (1− σ(x))π̂′(x)) . (95)

We also have from eq. (2) and (3):

ESσ [σ(x)Fφ(π̂l(x), h(x))] = ESσ [σ(x)Fφ(π̂σ(x), h(x))]− 1

bφ
×∆2 , (96)

ESσ
[σ(x)Fφ(π̂r(x), h(x))] = ESσ

[σ(x)Fφ(π̂σ(x), h(x))]− 1

bφ
×∆3 , (97)

with
∆2

.
= ESσ [σ(x)(π̂l(x)− π̂σ(x))h(x)] , (98)

∆3
.
= ESσ

[σ(x)(π̂r(x)− π̂σ(x))h(x)] . (99)
We also have:

∆3 −∆2 −∆1 = ES′ [(π̂∗(x)− 1y=1)h(x)] + ES[(π̂(x)− π̂∗(x))h(x)]
.
= ∆4 . (100)

Putting eqs (93), (96), (97) and (100) altogether, we get, after introducing Rademacher variables:
EDm,D′m,Σm sup

h
{ES′ [Fφ(yh(x))]− ES[Fφ(π̂(x), h(x))]}

= EDm,D′m,Σm sup
h
{ESσ [σ(x)Fφ(π̂σ(x), h(x))]− ESσ

[σ(x)Fφ(π̂σ(x), h(x))] + ∆4}

≤ EDm,D′m,Σm sup
h
{ESσ [σ(x)Fφ(π̂σ(x), h(x))]− ESσ

[σ(x)Fφ(π̂σ(x), h(x))]}

+EDm,D′m,Σm sup
h
{ES′ [(π̂∗(x)− 1y=1)h(x)] + ES[(π̂(x)− π̂∗(x))h(x)]}

= EDm,D′m,Σm sup
h
{ES′ [σ(x)Fφ(π̂′(x), h(x))]− ES[σ(x)Fφ(π̂(x), h(x))]}

+EDm,D′m,Σm sup
h
{ES′ [(π̂∗(x)− 1y=1)h(x)] + ES[(π̂(x)− π̂∗(x))h(x)]} (101)

≤ 2EDm,Σm sup
h
{ES[σ(x)Fφ(π̂(x), h(x))]}

+EDm,D′m,Σm sup
h
{ES′ [(π̂∗(x)− 1y=1)h(x)] + ES[(π̂(x)− π̂∗(x))h(x)]} . (102)

Eq. (101) holds because the distribution of the supremum is the same. We also have:
EDm,D′m,Σm sup

h
{ES′ [(π̂∗(x)− 1y=1)h(x)] + ES[(π̂(x)− π̂∗(x))h(x)]}

= EDm,D′m,Σm sup
h
{ES[(π̂(x)− π̂∗(x))h(x)]− ES′ [(1y=1 − π̂∗(x))h(x)]}

= ED2m
EI/2

1 ,I
/2
2

sup
h

ES[σ1(x)(π̂s|2(x)− π̂`|1(x))h(x)] (103)

= L2m . (104)
Eq. (103) holds because swapping the sample does not make any difference in the outer expectation,
as each couple of swapped samples is generated with the same probability without swapping.
Putting altogether (102) and (104) ends the proof of Lemma 7.

We now bound the deviations of EΣm suph {ES[σ(x)Fφ(π̂(x), h(x))]} with respect to its
expectation over the sampling of S, EDm,Σm suph {ES[σ(x)Fφ(π̂(x), h(x))]}. To do that, we use
a third time the IBDI and compute an upperbound for∣∣∣∣

EΣm supg {ES1
[σ(x)Fφ(π̂(x), h(x))]}

−EΣm supg {ES2 [σ(x)Fφ(π̂(x), h(x))]}

∣∣∣∣

≤ EΣm

[∣∣∣∣
supg {ES1

[σ(x)Fφ(π̂(x), h(x))]}
− supg {ES2

[σ(x)Fφ(π̂(x), h(x))]}

∣∣∣∣
]

(105)

≤ max
Σm

[∣∣∣∣
supg {ES1 [σ(x)Fφ(π̂(x), h(x))]}
− supg {ES2

[σ(x)Fφ(π̂(x), h(x))]}

∣∣∣∣
]
≤ Q1

m
, (106)
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where Q1 is defined in eq. (85). Eq. (105) holds because of the triangular inequality. Ineq. (106)
holds because |σ(.)| = 1. So with probability ≤ δ/2 over the sampling of S,

EΣm sup
h
{ES[σ(x)Fφ(π̂(x), h(x))]}

≤ EDm,Σm sup
h
{ES[σ(x)Fφ(π̂(x), h(x))]} −Q1

√
1

2m
log

2

δ
, (107)

where Q1 is defined via (84). We obtain that with probability > 1 − ((δ/2) + (δ/2)) = 1 − δ, the
following holds ∀h:

ED[Fφ(yh(x))] ≤ ES[Fφ(π̂(x), h(x))] + Λ(S) (see (78) and (79))
≤ ES[Fφ(π̂(x), h(x))] + EDm

sup
g
{ED[Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]}

+Q1

√
1

2m
log

2

δ
(from (86))

≤ ES[Fφ(π̂(x), h(x))] + EDm,D′m sup
g
{ES′ [Fφ(yg(x))]− ES[Fφ(π̂(x), g(x))]}

+Q1

√
1

2m
log

2

δ
(from (87))

≤ ES[Fφ(π̂(x), h(x))] + 2EDm,Σm sup
g
{ES[σ(x)Fφ(π̂(x), g(x))]}+ L2m

+Q1

√
1

2m
log

2

δ
(Lemma (7))

≤ ES[Fφ(π̂(x), h(x))] + 2EΣm sup
h
{ES[σ(x)Fφ(π̂(x), h(x))]}+ L2m

+2Q1

√
1

2m
log

2

δ
(from (107))

= EΣπ̂
ES[Fφ(σ(x)h(x))] + 2R̂bm + L2m + 4

(
2h∗
bφ

+ 1

)√
1

2m
log

2

δ
,

as claimed.

2.9.2 Proof of eq. (15)

We have F ′φ(x) = −(1/bφ))(φ?)′(−x) = −(1/bφ)(φ′)−1(−x) ∈ [−1/bφ, 0], and thus Fφ is 1/bφ-
Lipschitz, so Theorem 4.12 in [8] brings:

Rbm(F, η) = Eσ∼Σm sup
h∈H

{
Ei∼[m][σiEσ′∼Σπ̂

[Fφ(σ′ih(xi)− η)]]
}

≤ bφEσ∼Σm sup
h∈H

{
Ei∼[m][σiEσ′∼Σπ̂

[σ′ih(xi)− η]]
}

= bφEσ∼Σm sup
h∈H

{
Ei∼[m][σiEσ′∼Σπ̂

[σ′ih(xi)]]
}

= bφEσ∼Σm sup
h∈H

{
Ei∼[m][σi(2π̂(xi)− 1)h(xi)]

}
,

as claimed.

3 Supplementary Material on Experiments

3.1 Full Experimental Setup

All mean operator algorithms have been coded in R. For ∝SVM and InvCal, we used a Matlab1

implementation from the authors of [1]. The ranges of parameters for cross validation are λ = λ′m
with λ′ ∈ {0} ∪ 10{0,1,2}, γ ∈ 10−{2,1,0}, σ ∈ 2−{2,1,0} for mean operator algorithms. We ran all

1https:/github.com/felixyu/pSVM
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experiments with Dw = I and ε = 0. Since we tested on similar domains -6 are actually the same-
ranges for InvCal and ∝SVM were taken from [1]. To avoid an additional source of complexity
in the analysis, we cross-validated all hyper-parameters using the knowledge of all labels of the
validation sets; notice that labels at validation time generally would not be accessible in real world
applications.

3.2 Simulated Domain for Violation of Homogeneity Assumption

The synthetic data generated for this test consists on 16 classification problems, each one formed
by 16 bags of 100 two-dimensional normal samples. The distribution generating the first dataset
satisfies the homogeneity assumption (Figure 1 (a)). Then, we gradually change the position of the
class-conditional bag-conditional means on one linear direction (to the right on Figure 1 (b) and (c)),
with different offsets for different bags. In Figure 1 we give a graphical explanation of the process
with 3 bags.
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Figure 1: Violation of homogeneity assumption

3.3 Simulated Domain from [1]

The MM algorithm was shown to learn a model with zero accuracy prediction on the toy domain of
[1]. We report here in Table 1 performance of all mean operator algorithms measured in transductive
setting, training with cross-validation. Although none of the distances used in our experiments in
LMM leads reasonable accuracy in the toy dataset, AMMmax initialised with any starting point learns
in one step a model which perfectly classifies all the instances. We also notice that EMM returns an
optimal classifier by itself (not reported in Table 1).

Table 1: AUC on the toy dataset of [1]

AMMmin AMMmax

EMM 100.00 100.00
MM 8.46 100.00
LMMG 8.46 100.00
LMMG,s 8.46 100.00
LMMnc 8.46 100.00
1 8.46 100.00
10ran 100.00 100.00

3.4 Additional Tests on alter-∝SVM [1]

In our experiments, we observe that AUC achieved by ∝SVM can be high, but it is also often below
0.5; in those cases the algorithm outputs models which are worse than random and the average
performance over 5 test folds drops. We are able to reproduce the same behaviour on the heart
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dataset provided by the authors in a demo for alter-∝SVM; this also proves our bag assignment for
LLP simulation does not introduce the issue. In a first test, we randomly select 3/4 of the dataset,
and randomly assign instances to 4 bags of fixed size 64, following [1]. We repeat the training split
50 times with C = Cp = 1, as in the demo, and we measure AUCs on the same training set. As
expected, a consistent number of run (22%) ends up producing AUC smaller than 0.5. We display
in Figure 2 (a) the AUC’s density profile, which shows a relevant mass around 0.25; notice also the
two distribution modes look symmetric around 0.5.

In a second test, we investigate further measuring pairs of training set AUC and loss value obtained
by the same execution of the algorithm. In this case, we run over all parameters ranges defined in
∝SVM’s paper, and do not pick the model that minimizes the loss over the 10 random runs, but
record losses of all. Figures 2 (b) and (c) show scatter plots relative to two chosen training set splits.
We observe that loss minimization can lead both to high and low AUCs, with only few points close
to 0.5. A possible explanation might be in the inverted polarity of the learnt linear classifier; inverted
polarity in this contest means having a model which would achieve better performance classifying
instances labels opposite to the ones predicted. We conclude that optimizing ∝SVM’s loss in some
cases might be equivalent to train a max-margin separator of the unlabelled data, which only exploits
weakly the information given by the label proportions. This would give a heuristic understanding of
the frequent symmetrical behaviour of the AUC.
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Figure 2: alter-∝SVM: empirical distribution of AUC (a), and relationship between loss and AUC
in two different train spit (b)(c)

3.5 Scalability

Figure 3 (a) shows runtime of learning (including cross-validation) of MM and LMM with regard to
the number of bags – which is the natural parameter of time complexity for our Laplacian-based
methods. Although the 3 layers of cross-validation of LMMG,s, LMMnc results the only method
clearly not scalable. Figure 3 (b) presents how our one-shots algorithms scale on all small domains
as a function of problem size. Runtime is averaged over the different bag assignments. The same
plot is given in Figure 3 (c) for iterative algorithms, in particular AMMmin and (alter/conv)-∝SVM.
All curves are completed with measurements on bigger domains when available. Runtime of SVMs
is not directly comparable with our methods. This is due to both (a) the implementation on different
programming languages and (b) to the fact that the code provided implements kernel SVM, even for
linear kernels, which is a big overhead in computation and memory access. Nevertheless, the high
growth rate of conv-∝SVM makes the algorithm not suitable for large datasets. Noticeably, even if
alter-∝SVM does not show such behaviour, we are not able to run it on our bigger domains, since it
requires approximately 10 hours to run on a training set split with fixed parameters.

3.6 Full Results on Small Domains

Finally we report details about all experiments run on the 10 small domains (Table 2). In the fol-
lowing Tables, columns show the number of bags generated through K-MEANS. Each cell contains
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Figure 3: Learning runtime of LMM for bags number (a), and for domain size one-shot (b) and
iterative methods (c)

Table 2: Small domains size

dataset instances feature
arrhythmia 452 297
australian 690 39
breastw 699 11
colic 368 83
german 1000 27
heart 270 14
ionosphere 351 37
vertebral column 620 9
vote 435 49
wine 178 16

average AUC over 5 test splits and standard deviation; runtime in second is in the separated column.
Best performing algorithm and ones not worse than 0.1 AUC are bold faced. Comparisons are made
in the respective top/bottom sub-tables, which group one-shot and iterative algorithms. We use ↑ to
highlight runs which achieve average AUC greater or equal than the Oracle.
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Table 3: arrhythmia

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 70.91± 6.81 2 50.55± 7.54 2 50.31± 7.55 2 47.03± 6.60 2 52.34± 7.25 2
MM 64.99± 2.99 2 60.48± 7.28 1 68.17± 5.95 2 70.01± 9.33 2 72.85± 9.49 2
LMMG 64.99± 2.99 18 68.10± 4.43 17 71.53± 2.36 20 72.06± 7.62 18 76.29± 7.91 20
LMMG,s 64.99± 2.99 49 68.34± 3.95 49 71.53± 2.36 54 72.06± 7.62 52 76.29± 7.91 57
LMMnc 64.99± 2.99 83 61.19± 7.53 83 70.21± 5.17 119 70.89± 9.86 267 73.82± 9.29 854
InvCal 64.75± 3.04 17 66.12± 260 17 60.87± 3.54 17 44.46± 3.36 17 56.36± 5.26 17

A
M

M
m

in

AMMEMM 59.54± 7.52 9 52.65± 3.10 8 63.46± 10.37 8 67.85± 9.56 8 75.65± 8.81 8
AMMMM 57.29± 5.95 7 60.00± 7.96 4 70.12± 6.46 4 73.66± 8.86 5 78.36± 8.53 5
AMMG 58.15± 6.83 31 68.80± 2.15 28 73.08± 2.92 30 74.54± 7.98 29 80.32± 8.08 30
AMMG,s 56.67± 4.66 92 69.83± 2.69 84 73.08± 2.92 88 73.34± 7.62 88 80.32± 8.08 91
AMMnc 57.29± 5.95 97 59.71± 8.39 90 71.43± 6.21 126 73.49± 8.95 274 78.04± 8.26 862
AMM1 65.80± 6.92 5 70.00± 5.89 4 68.17± 7.19 4 69.93± 4.27 4 72.31± 5.02 5
AMM10ran 54.09± 12.03 30 55.78± 17.36 32 66.38± 7.32 51 66.89± 6.75 51 73.61± 5.15 57

A
M

M
m

ax

AMMEMM 50.59± 5.97 41 59.32± 5.82 41 60.85± 5.43 37 60.38± 4.08 41 58.31± 8.40 40
AMMMM 62.08± 9.46 45 46.86± 3.90 34 67.28± 8.92 33 74.04± 9.46 35 71.00± 7.65 38
AMMG 62.08± 9.46 141 62.27± 8.14 128 65.78± 3.92 118 64.64± 10.26 121 73.07± 6.72 124
AMMG,s 62.08± 9.46 414 63.13± 5.17 380 63.85± 7.00 346 65.49± 10.62 354 73.05± 6.70 374
AMMnc 62.08± 9.46 206 55.57± 6.07 182 64.30± 6.24 207 76.33± 3.96 362 70.82± 4.23 965
AMM1 60.53± 9.79 31 54.14± 13.28 34 67.45± 3.91 32 55.85± 8.96 35 61.26± 6.95 38
AMM10ran 49.79± 8.14 307 55.37± 14.62 370 53.78± 5.13 301 60.62± 8.04 322 64.20± 2.84 338

SV
M alter-∝ 49.24± 3.92 96 57.10± 2.71 100 56.38± 2.73 104 35.31± 1.30 114 38.68± 6.10 125

conv-∝ 54.15± 2.22 2054 34.82± 3.20 2078 38.31± 8.24 2168 61.96± 1.10 1930 48.77± 5.73 2004
Oracle 99.99± 0.02 2 99.98± 0.05 2 99.94± 0.13 2 100.00± 0.00 2 99.97± 0.07 2

Table 4: australian

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 66.48± 3.16 <1 64.67± 4.22 <1 63.56± 4.00 <1 64.17± 4.80 <1 63.14± 5.41 <1
MM 81.08± 1.66 <1 87.11± 2.68 <1 87.49± 2.86 1 87.36± 2.22 <1 89.53± 2.13 2
LMMG 81.08± 1.66 4 87.09± 2.82 4 87.81± 3.16 5 88.46± 2.50 6 89.69± 2.68 8
LMMG,s 81.08± 1.66 14 87.81± 3.08 15 87.88± 3.21 19 89.18± 2.05 20 90.80± 2.53 27
LMMnc 81.08± 1.66 57 87.02± 2.72 49 87.46± 3.03 57 88.06± 2.31 90 89.41± 2.41 217
Invcal 19.67± 2.23 5 59.50± 5.86 5 68.00± 5.27 5 60.83± 3.17 5 51.81± 4.72 5

A
M

M
m

in

AMMEMM 86.65± 2.06 4 86.59± 3.08 4 86.50± 4.11 4 89.51± 2.48 6 88.85± 4 6
AMMMM 87.54± 3.84 3 84.35± 3.63 4 86.99± 3.87 4 89.43± 1.34 4 89.55± 3.18 5
AMMG 87.54± 3.84 10 84.79± 3.17 13 86.78± 4.21 14 89.52± 2.18 14 89.88± 2.78 18
AMMG,s 87.54± 3.84 30 85.12± 3.75 39 86.75± 4.19 43 90.37± 1.67 43 89.95± 2.80 54
AMMnc 87.54± 3.84 63 85.10± 3.55 57 86.63± 4.02 66 89.00± 1.83 97 90.11± 2.93 227
AMM1 72.60± 5.70 2 85.04± 2.53 3 86.89± 3.73 4 88.91± 2.32 4 88.98± 3.00 4
AMM10ran 79.21± 5.07 27 80.97± 2.27 31 85.08± 3.30 34 89.19± 1.81 46 87.70± 2.68 47

A
M

M
m

ax

AMMEMM 80.09± 3.99 17 71.46± 1.85 16 73.41± 6.07 16 73.25± 3.33 18 81.73± 3.60 19
AMMMM 86.83± 4.26 20 72.96± 2.30 15 70.25± 4.65 16 73.89± 5.77 18 75.91± 3.50 21
AMMG 86.83± 4.26 61 73.32± 1.95 48 71.16± 4.94 51 73.57± 6.86 55 75.25± 3.18 63
AMMG,s 86.83± 4.26 181 73.25± 2.03 143 71.19± 4.91 153 74.77± 6.85 163 75.25± 3.18 188
AMMnc 86.83± 4.26 114 73.74± 2.48 92 70.36± 5.16 102 75.16± 5.71 138 76.44± 2.74 272
AMM1 69.57± 3.99 15 73.12± 3.41 15 68.25± 2.80 16 71.02± 5.46 17 81.70± 3.02 19
AMM10ran 77.82± 9.12 192 68.82± 4.73 138 73.58± 4.29 146 72.21± 9.35 164 74.16± 5.25 188

SV
M alter-∝ 53.26± 2.07 25 51.08± 2.35 27 50.90± 1.63 31 48.29± 4.51 38 41.66± 5.11 64

conv-∝ 77.80± 6.16 3924 66.14± 4.68 3790 57.94± 18.54 3244 61.37± 21.17 3327 63.73± 11.33 3603
Oracle 92.81± 2.89 <1 92.68± 2.24 <1 92.44± 3.01 ,1 92.61± 2.03 <1 92.99± 3.58 <1

Table 5: breastw

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 48.65± 7.54 <1 71.45± 16.59 <1 61.68± 7.47 <1 34.88± 12.33 <1 47.50± 22.77 <1
MM 99.42± 0.44 2 99.30± 0.39 <1 99.28± 0.25 <1 99.28± 0.37 <1 99.18± 0.47 1
LMMG 99.42± 0.44 6 99.33± 0.38 3 99.28± 0.25 3 99.35± 0.39 3 99.22± 0.46 4
LMMG,s 99.42± 0.44 20 99.34± 0.39 10 99.37± 0.24 ↑ 11 99.36± 0.38 12 99.23± 0.44 15
LMMnc 99.42± 0.44 41 99.29± 0.40 39 99.27± 0.25 41 99.30± 0.38 59 99.20± 0.47 125
Invcal 19.67± 2.23 5 59.50± 5.86 5 68± 5.27 5 60.83± 3.17 5 51.81± 4.72 5

A
M

M
m

in

AMMEMM 99.37± 0.42 1 99.33± 0.39 1 99.17± 0.54 1 99.34± 0.40 2 99.29± 0.49 2
AMMMM 99.34± 0.46 2 99.30± 0.37 1 99.36± 0.27 ↑ 2 99.29± 0.41 2 99.29± 0.48 2
AMMG 99.34± 0.46 8 99.30± 0.37 ↑ 5 99.36± 0.27 ↑ 6 99.29± 0.41 7 99.30± 0.49 8
AMMG,s 99.34± 0.46 23 99.30± 0.37 ↑ 16 99.36± 0.27 ↑ 19 99.29± 0.41 20 99.30± 0.49 25
AMMnc 99.34± 0.46 43 99.31± 0.35 41 99.36± 0.27 ↑ 44 99.29± 0.41 62 99.29± 0.48 129
AMM1 99.35± 0.45 <1 99.32± 0.37 1 99.20± 0.45 1 99.30± 0.42 1 99.31± 0.48 2
AMM10ran 99.36± 0.45 8 99.11± 0.56 9 99.26± 0.35 11 99.28± 0.43 11 99.32± 0.49 ↑ 14

A
M

M
m

ax

AMMEMM 99.42± 0.55 6 99.02± 0.66 6 99.32± 0.25 ↑ 6 99.43± 0.30 ↑ 7 99.40± 0.38 ↑ 9
AMMMM 99.01± 1.12 6 99.00± 0.64 6 99.32± 0.35 ↑ 6 99.37± 0.38 7 99.39± 0.39 ↑ 9
AMMG 99.01± 1.12 20 98.99± 0.64 17 99.33± 0.35 ↑ 18 99.37± 0.38 21 99.41± 0.39 ↑ 27
AMMG,s 99.01± 1.12 60 98.99± 0.64 52 99.19± 0.45 55 99.37± 0.39 63 99.41± 0.39 ↑ 82
AMMnc 99.01± 1.12 55 98.99± 0.64 53 99.32± 0.35 ↑ 56 99.37± 0.39 76 99.40± 0.38 ↑ 148
AMM1 99.09± 1.08 5 99.09± 0.46 5 99.29± 0.26 5 99.37± 0.38 6 99.40± 0.38 ↑ 8
AMM10ran 98.97± 1.29 47 98.58± 0.75 48 99.39± 0.27 ↑ 52 99.37± 0.38 61 99.36± 0.41 ↑ 81

SV
M alter-∝ 68.63± 17.63 24 93.24± 4.43 25 75.17± 7.19 33 90.11± 2.58 42 18.23± 5.67 82
conv-∝ 99.41± 0.48 3346 56.33± 4.28 3043 77.71± 15.51 2800 32.90± 7.24 3036 67.21± 8.19 2037
Oracle 99.48± 0.41 <1 99.53± 0.41 <1 99.31± 0.37 <1 99.43± 0.39 <1 99.32± 0.44 <1
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Table 6: colic

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 60.69± 11.30 <1 51.83± 6.36 <1 52.99± 5.37 <1 53.83± 11.49 <1 52.95± 13.28 <1
MM 62.00± 6.44 <1 70.48± 7.43 <1 67.13± 9.85 2 72.60± 9.35 1 72.05± 3.38 1
LMMG 62.00± 6.44 7 70.37± 7.47 6 72.15± 8.51 8 75.96± 10.38 8 75.47± 3.59 9
LMMG,s 62.00± 6.44 20 72.10± 6.26 20 75.08± 7.14 28 78.54± 10.20 26 76.43± 3.10 27
LMMnc 62.00± 6.44 31 70.45± 7.46 33 68.38± 9.69 52 74.04± 10.02 112 72.87± 3.20 345
Invcal 38.73± 5.43 6 65.87± 6.70 6 59.30± 3.28 6 61.54± 4.17 6 59.53± 10.00 6

A
M

M
m

in

AMMEMM 59.12± 8.86 3 56.23± 8.49 3 70.93± 10.31 3 78.22± 6.00 3 74.22± 6.35 4
AMMMM 77.44± 3.16 2 78.84± 6.95 3 69.46± 6.44 4 71.93± 7.61 4 81.44± 5.18 4
AMMG 77.44± 3.16 11 79.41± 2.23 12 72.62± 5.42 14 77.80± 8.11 14 84.05± 2.33 16
AMMG,s 77.44± 3.16 34 79.41± 2.23 36 71.19± 5.38 41 76.71± 6.70 40 83.27± 3.14 47
AMMnc 77.44± 3.16 36 78.33± 7.35 38 70.95± 4.69 57 74.67± 9.10 117 79.86± 4.87 352
AMM1 38.69± 7.18 1 56.07± 14.68 2 75.14± 4.78 2 75.36± 5.64 3 77.51± 5.00 3
AMM10ran 37.63± 4.19 10 77.75± 5.66 12 74.95± 5.64 15 76.59± 10.81 17 78.94± 4.17 23

A
M

M
m

ax

AMMEMM 50.94± 6.54 9 62.44± 9.94 9 57.53± 13.37 15 53.63± 14.71 17 67.63± 5.63 19
AMMMM 43.05± 14.65 8 75.40± 4.64 9 63.72± 14.41 16 55.37± 10.19 18 69.49± 3.17 20
AMMG 43.05± 14.65 28 78.19± 5.93 31 63.14± 7.53 51 61.32± 5.69 57 68.21± 9.35 62
AMMG,s 43.05± 14.65 84 77.91± 6.36 91 62.57± 6.11 151 64.42± 10.77 168 69.47± 6.40 184
AMMnc 42.92± 14.74 52 73.74± 7.21 57 60.39± 12.21 94 62.46± 15.13 162 68.63± 2.37 381
AMM1 51.92± 19.91 7 59.89± 10.79 8 58.76± 12.16 14 62.31± 13.32 17 68.25± 6.42 18
AMM10ran 56.39± 10.26 60 71.28± 8.76 68 65.01± 13.85 114 69.59± 9.96 139 74.40± 5.54 159

SV
M alter-∝ 46.33± 2.73 18 50.82± 1.21 19 60.84± 5.51 23 62.20± 3.79 32 57.04± 10.10 49

conv-∝ 25.27± 3.45 1438 35.96± 9.34 1460 50.31± 5.57 1439 35.46± 9.11 1423 50.13± 8.34 1427
Oracle 86.19± 4.23 <1 87.80± 2.50 <1 87.05± 6.05 <1 86.53± 7.15 <1 87.97± 2.02 <1

Table 7: german

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 47.90± 4.51 <1 50.11± 5.17 <1 46.02± 5.88 <1 50.94± 1.61 <1 51.02± 2.55 <1
MM 61.07± 5.57 <1 62.09± 4.00 <1 65.50± 6.54 2 65.61± 6.05 2 66.96± 4.56 2
LMMG 61.07± 5.57 4 62.14± 4.04 4 67.07± 6.36 6 66.43± 6.61 6 70.18± 4.76 7
LMMG,s 61.07± 5.57 11 62.75± 3.32 12 67.91± 5.80 16 66.40± 6.90 19 70.43± 5.57 21
LMMnc 61.07± 5.57 103 62.04± 4.00 87 65.47± 6.56 87 65.61± 6.06 113 67.01± 4.58 209
Invcal 38.74± 5.43 6 65.87± 6.70 6 59.30± 3.28 6 61.53± 4.17 6 59.54± 10.00 6

A
M

M
m

in

AMMEMM 53.89± 6.82 7 48.63± 8.71 7 53.24± 8.02 8 57.58± 3.44 9 63.64± 11.82 11
AMMMM 60.45± 5.58 5 63.33± 4.99 6 74.58± 4.76 6 72.43± 1.39 8 75.84± 5.24 7
AMMG 60.45± 5.58 17 64.16± 6.99 18 74.18± 4.34 21 72.08± 1.24 22 75.94± 4.55 24
AMMG,s 60.45± 5.58 52 64.20± 7.24 57 74.29± 4.50 57 72.18± 1.37 66 75.77± 4.44 74
AMMnc 60.45± 5.58 118 63.20± 6.09 101 75.37± 4.42 100 72.53± 1.25 130 75.99± 5.26 225
AMM1 37.08± 4.42 3 38.53± 2.97 3 41.89± 2.07 6 41.13± 2.58 9 47.09± 9.40 10
AMM10ran 49.12± 6.50 36 60.31± 5.57 38 73.82± 4.70 44 72.07± 3.22 54 74.73± 4.54 72

A
M

M
m

ax

AMMEMM 46.45± 3.30 18 46.31± 3.02 19 67.34± 13.42 19 72.41± 6.17 20 74.58± 4.63 22
AMMMM 52.47± 8.88 18 58.61± 12.19 18 65.14± 21.84 19 74.90± 4.86 20 74.88± 3.75 22
AMMG 52.47± 8.88 54 56.12± 12.25 53 74.93± 8.18 57 73.87± 4.55 60 75.43± 4.02 67
AMMG,s 52.47± 8.88 160 54.79± 11.61 158 74.84± 8.12 167 73.87± 4.55 180 75.40± 4.05 197
AMMnc 52.47± 8.88 154 49.24± 12.68 137 65.11± 21.84 137 74.89± 4.75 167 74.70± 3.71 269
AMM1 58.39± 13.20 17 61.04± 14.43 17 69.66± 16.93 17 76.49± 3.29 18 75.44± 3.65 20
AMM10ran 50.47± 9.69 168 56.78± 10.89 164 60.41± 15.48 160 61.62± 18.81 170 73.25± 6.97 191

SV
M alter-∝ 49.36± 1.68 34 49.59± 1.58 37 48.43± 2.23 40 48.85± 1.55 47 51.05± 2.72 64

conv-∝ 29.70± 2.03 6031 64.15± 5.43 6343 63.01± 2.59 6362 62.01± 3.61 6765 63.17± 3.62 7004
Oracle 79.43± 2.88 <1 78.95± 3.99 <1 79.18± 1.70 <1 79.42± 2.80 <1 79.02± 3.62 <1

Table 8: heart

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 51.82± 12.39 <1 50.43± 23.03 <1 55.09± 19.44 <1 49.55± 17.47 <1 63.49± 18.11 <1
MM 68.75± 6.09 <1 60.24± 13.54 <1 80.35± 9.42 <1 76.11± 6.66 1 83.50± 6.22 1
LMMG 68.75± 6.09 3 68.04± 8.53 3 82.87± 6.16 4 82.92± 1.28 4 85.85± 3.84 6
LMMG,s 68.75± 6.09 9 69.04± 6.52 12 83.68± 5.90 13 82.96± 1.79 14 86.36± 3.94 17
LMMnc 68.75± 6.09 11 60.40± 14.18 12 80.24± 9.74 189 78.14± 4.98 42 84.47± 5.06 119
Invcal 28.84± 4.96 4 70.58± 6.45 4 37.33± 10.31 4 44.96± 9.64 4 62.76± 15.05 4

A
M

M
m

in

AMMEMM 60.50± 30.88 <1 63.36± 28.50 1 72.05± 19.17 1 80.87± 15.51 1 91.63± 6.10 ↑ 2
AMMMM 86.59± 6.14 1 80.57± 16.72 1 87.96± 4.50 2 90.04± 5.14 2 91.45± 5.70 ↑ 2
AMMG 86.59± 6.14 5 86.70± 5.45 5 87.46± 2.67 6 91.06± 2.87 7 91.55± 5.93 ↑ 9
AMMG,s 86.59± 6.14 15 86.70± 5.45 16 88.31± 4.00 18 90.86± 2.81 21 91.55± 5.93 ↑ 27
AMMnc 86.59± 6.14 13 78.97± 16.78 14 87.82± 4.42 21 90.48± 3.53 45 91.25± 5.77 125
AMM1 90.62± 5.82 <1 89.19± 5.90 1 88.64± 3.21 1 90.78± 2.10 1 91.03± 5.82 1
AMM10ran 78.38± 30.44 5 87.32± 4.71 6 89.85± 2.31 7 91.02± 2.49 9 90.47± 6.39 14

A
M

M
m

ax

AMMEMM 85.74± 13.28 3 84.60± 10.87 4 84.60± 7.84 3 89.83± 2.72 5 71.65± 18.52 6
AMMMM 85.35± 11.06 4 82.43± 9.76 4 90.49± 4.75 4 89.92± 2.90 89.35± 6.98 7
AMMG 85.35± 11.06 13 87.18± 6.56 13 90.49± 4.75 13 89.58± 2.79 16 88.55± 9.71 23
AMMG,s 85.35± 11.06 39 90.49± 5.05 40 90.58± 4.77 40 89.58± 2.79 49 89.94± 6.63 67
AMMnc 85.35± 11.06 20 82.73± 9.23 21 89.84± 4.24 30 90.06± 3.20 54 89.54± 6.60 140
AMM1 72.77± 37.27 4 89.31± 3.99 3 89.68± 3.79 3 90.62± 3.18 5 87.97± 9.42 6
AMM10ran 89.96± 5.62 32 89.93± 5.02 31 88.03± 3.16 30 90.80± 3.61 38 89.61± 8.68 54

SV
M alter-∝ 47.75± 17.58 15 59.72± 18.21 16 62.32± 12.83 20 58.49± 10.98 27 48.33± 12.77 47
conv-∝ 46.18± 43.41 1211 87.13± 5.30 1185 69.03± 23.18 1197 42.78± 23.51 1188 50.34± 15.75 1080
Oracle 91.72± 3.95 <1 91.22± 4.09 <1 91.27± 2.88 <1 91.54± 2.76 <1 91.42± 5.46 <1
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Table 9: ionosphere

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 44.28± 12.13 <1 51.86± 8.01 <1 50.69± 6.34 <1 44.60± 3.91 <1 48.91± 11.73 <1
MM 64.81± 8.82 <1 77.74± 5.23 1 78.95± 7.36 1 86.76± 2.96 1 88.13± 4.16 2
LMMG 64.81± 8.82 5 80.80± 2.32 6 83.46± 4.62 5 87.12± 2.23 7 88.24± 4.41 7
LMMG,s 64.81± 8.82 14 82.12± 2.50 15 83.24± 4.84 15 87.23± 1.57 17 87.99± 4.58 21
LMMnc 64.81± 8.82 20 79.39± 2.12 22 81.18± 6.40 32 87.05± 2.48 68 88.34± 4.32 182
Invcal 35.34± 8.76 5 44.78± 15.37 5 53.28± 9.02 5 53.52± 8.51 5 54.08± 9.53 5

A
M

M
m

in

AMMEMM 56.77± 6.42 2 85.07± 5.24 2 86.04± 5.21 2 86.81± 3.81 2 86.71± 3.54 3
AMMMM 46.67± 8.53 3 84.52± 4.60 2 84.23± 6.67 2 85.92± 4.48 3 87.77± 5.56 3
AMMG 46.67± 8.53 10 85.05± 4.11 9 85.28± 6.19 9 85.97± 3.19 11 88.85± 5.15 12
AMMG,s 46.67± 8.53 28 84.63± 3.80 26 85.28± 6.19 27 86.01± 4.37 30 88.85± 5.15 36
AMMnc 46.67± 8.53 24 85.16± 4.39 26 84.77± 6.45 36 85.96± 4.50 72 87.57± 5.23 174
AMM1 51.47± 13.46 1 83.65± 3.89 2 87.51± 4.24 2 86.76± 4.07 2 87.83± 5.05 2.11
AMM10ran 56.92± 22.42 10 80.39± 6.36 11 85.89± 5.52 12 87.32± 3.17 13 87.81± 6.52 15

A
M

M
m

ax

AMMEMM 57.99± 8.96 10 76.31± 5.29 10 82.07± 4.47 11 86.99± 7.23 11 87.08± 5.86 12
AMMMM 74.57± 18.16 10 75.32± 4.74 10 78.65± 7.93 11 88.84± 3.10 12 90.01± 5.50 13
AMMG 74.57± 18.16 32 78.06± 5.11 33 83.24± 6.54 35 89.98± 3.08 ↑ 38 88.41± 5.94 41
AMMG,s 74.57± 18.16 96 79.21± 4.58 98 83.36± 6.61 104 90.88± 3.11 ↑ 112 88.41± 5.94 121
AMMnc 74.57± 18.16 47 75.80± 5.14 50 80.22± 6.95 61 88.05± 2.47 99 89.19± 5.45 198
AMM1 65.53± 17.30 10 77.29± 6.63 9 82.10± 7.95 10 85.45± 3.31 11 89.01± 7.02 12
AMM10ran 65.05± 16.59 85 79.60± 6.56 82 78.56± 4.77 88 88.44± 3.22 94 89.37± 6.67 109

SV
M alter-∝ 43.07± 6.05 22 44.58± 4.95 24 69.24± 4.99 27 67.72± 12.25 55 59.67± 7.01 49

conv-∝ 36.67± 7.44 1316 44.55± 9.58 1280 57.84± 5.98 1788 65.93± 3.90 887 47.58± 11.29 1287
Oracle 90.07± 5.04 <1 89.99± 4.23 <1 90.08± 5.50 <1 89.42± 6.34 <1 90.22± 5.17 <1

Table 10: vertebral column

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 57.91± 22.04 <1 59.05± 10.46 <1 51.43± 17.22 <1 45.39± 23.81 <1 61.30± 17.86 <1
MM 77.45± 6.14 <1 78.97± 3.54 <1 79.85± 4.14 <1 82.74± 2.11 1 87.45± 3.57 1
LMMG 77.45± 6.14 3 78.34± 2.82 3 81.93± 3.81 3 87.52± 2.71 5 90.43± 3.20 6
LMMG,s 77.45± 6.14 9 78.34± 2.82 8 83.87± 3.63 9 87.71± 2.56 13 91.06± 3.00 14
LMMnc 77.45± 6.14 31 78.43± 2.74 31 80.02± 4.02 35 83.50± 2.46 54 88.10± 3.57 122
InvCal 33.74± 24.95 4 36.46± 5.27 4 72.54± 5.79 4 61.89± 6.25 4 59.91± 8.79 4

A
M

M
m

in

AMMEMM 81.07± 8.12 2 78.56± 8.66 2 90.56± 3.44 2 92.08± 1.78 2 93.14± 2.04 3
AMMMM 75.64± 5.02 2 68.54± 4.90 2 87.10± 4.16 2 92.66± 1.99 3 93.50± 1.93 3
AMMG 75.64± 5.02 6 69.27± 5.69 7 87.57± 4.48 8 92.45± 1.89 10 93.59± 1.83 11
AMMG,s 75.64± 5.02 19 69.27± 5.69 22 87.86± 4.62 23 91.04± 3.82 30 92.97± 1.58 32
AMMnc 75.64± 5.02 34 68.49± 4.86 35 88.33± 5.17 39 91.26± 3.98 59 93.70± 2.09 127
AMM1 74.49± 6.08 1 68.66± 4.92 1 90.60± 3.18 2 92.41± 1.58 2 92.95± 1.75 2
AMM10ran 76.42± 4.80 12 75.75± 5.07 16 92.59± 0.22 18 92.15± 1.44 15 92.46± 1.79 19

A
M

M
m

ax

AMMEMM 76.02± 12.70 4 78.42± 14.14 5 87.87± 1.94 5 87.88± 3.29 6 90.71± 2.79 8
AMMMM 75.31± 13.69 5 87.22± 3.13 5 87.43± 2.59 6 88.85± 2.39 6 90.29± 2.47 9
AMMG 75.31± 13.69 15 73.91± 16.06 17 87.89± 1.97 17 87.98± 3.27 21 90.29± 2.47 28
AMMG,s 75.31± 13.69 44 67.48± 16.70 50 87.89± 1.97 51 87.98± 3.27 63 90.18± 3.26 82
AMMnc 75.31± 13.69 43 82.97± 8.05 45 87.85± 2.00 49 88.91± 2.41 70 90.29± 2.47 144
AMM1 77.35± 13.61 4 70.14± 17.19 5 84.17± 2.66 5 89.12± 2.31 6 90.94± 3.06 8
AMM10ran 72.39± 14.33 36 82.49± 9.32 47 87.44± 1.52 47 85.79± 4.54 50 90.87± 2.53 69

SV
M alter-∝ 40.88± 5.80 21 30.17± 7.47 23 68.26± 6.40 26 58.84± 21.21 33 37.17± 17.48 48

conv-∝ 77.72± 6.23 3624 72.28± 8.88 2292 36.21± 8.38 2328 45.01± 14.91 2481 70.49± 5.59 2306
Oracle 93.80± 1.06 <1 93.83± 1.67 <1 93.89± 1.89 <1 93.83± 1.62 <1 94.00± 1.42 <1

Table 11: vote (feature physician-fee-freeze was removed to make the problem harder)

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 54.32± 8.79 <1 45.47± 15.63 <1 46.88± 6.06 1 55.20± 18.03 1 53.93± 10.59 1
MM 94.56± 2.04 1 95.37± 2.62 2 95.65± 0.85 2 96.33± 1.19 2 96.74± 1.50 2
LMMG 94.56± 2.04 7 95.93± 2.47 8 95.87± 1.12 8 96.41± 1.51 9 96.94± 1.67 10
LMMG,s 94.56± 2.04 20 96.03± 2.42 22 96.00± 1.18 23 96.38± 1.99 25 96.81± 2.09 28
LMMnc 94.56± 2.04 28 95.83± 2.34 31 95.71± 0.92 43 96.23± 1.58 85 96.81± 1.50 234
Invcal 94.85± 1.71 4 73.10± 2.21 4 77.86± 4.92 4 26.74± 6.82 4 79.77± 6.25 4

A
M

M
m

in

AMMEMM 93.67± 1.84 2 95.04± 3.01 2 96.18± 0.78 2 96.43± 1.31 2 96.94± 1.62 3
AMMMM 93.48± 2.31 2 95.12± 2.89 3 96.10± 0.82 3 96.15± 1.31 4 97.30± 1.58 4
AMMG 93.48± 2.31 10 95.61± 1.90 12 95.92± 1.02 11 96.41± 1.12 13 97.36± 1.47 15
AMMG,s 93.48± 2.31 29 94.87± 3.02 33 95.34± 0.98 35 96.11± 1.30 39 97.36± 1.47 46
AMMnc 93.48± 2.31 32 95.38± 2.38 35 95.81± 1.01 46 96.03± 1.48 89 97.38± 1.45 238
AMM1 93.57± 1.99 2 94.32± 3.36 2 96.25± 0.66 2 96.17± 1.20 2 96.83± 1.42 2
AMM10ran 93.84± 2.23 11 94.59± 3.56 11 95.85± 0.97 12 96.63± 1.32 15 96.66± 1.70 18

A
M

M
m

ax

AMMEMM 91.68± 0.81 11 94.97± 2.24 12 94.94± 1 13 95.83± 1.36 14 96.60± 1.31 15
AMMMM 92.47± 0.38 12 93.43± 4.07 13 93.71± 1.34 14 95.40± 1.10 15 96.77± 1.31 17
AMMG 92.47± 0.38 40 94.34± 2.65 34 94.03± 0.81 43 95.65± 1.70 48 96.45± 1.52 53
AMMG,s 92.47± 0.38 124 94.22± 2.87 127 94.03± 0.81 132 96.01± 1.83 142 96.37± 1.39 160
AMMnc 92.47± 0.38 65 94.96± 3.48 66 94.07± 0.78 78 95.14± 1.18 124 96.74± 1.31 275
AMM1 91.60± 1.29 11 94.48± 2.14 12 94.34± 0.82 12 95.36± 1.56 13 96.54± 1.51 15
AMM10ran 90.49± 2.02 101 94.59± 2.85 103 94.19± 0.73 104 95.73± 1.83 112 96.21± 1.67 128

SV
M alter-∝ 51.58± 3.27 19 62.74± 4.27 21 60.88± 3.50 25 63.01± 9.51 33 41.87± 7.12 57

conv-∝ 5.63± 2.03 1848 47.22± 4.92 1807 19.62± 5.91 1855 57.54± 11.22 1598 46.27± 9.48 1281
Oracle 97.11± 1.31 <1 97.43± 2.25 <1 97.06± 0.87 <1 97.33± 1.38 <1 97.52± 1.49 <1
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Table 12: wine

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) AUC time(s) AUC time(s) AUC time(s) AUC time(s)

EMM 70.38± 20.39 <1 56.72± 29.85 <1 55.42± 20.70 <1 65.82± 21.45 <1 46.85± 16.71 <1
MM 66.45± 5.42 1 82.41± 6.76 1 85.28± 4.80 1 90.35± 3.73 1 95.57± 2.45 1
LMMG 66.45± 5.42 4 89.72± 3.73 5 90.69± 5.30 5 94.09± 3.45 5 97.74± 0.67 6
LMMG,s 66.45± 4.412 13 93.32± 2.94 13 92.68± 6.06 14 95.53± 2.40 15 97.69± 0.90 19
LMMnc 66.45± 5.42 9 84.00± 5.48 11 86.30± 4.18 18 91.10± 4.52 40 96.28± 2.06 116
Invcal 58.96± 5.77 6 81.38± 4.59 6 55.18± 9.59 6 63.07± 12.61 6 71.01± 18.19 6

A
M

M
m

in

AMMEMM 80.27± 18.08 1 90.33± 8.87 1 91.46± 10.59 1 88.97± 6.26 1 88.34± 22.79 2
AMMMM 61.84± 9.20 2 85.56± 7.20 1 88.70± 8.31 2 93.78± 9.12 2 98.66± 1.11 2
AMMG 61.84± 9.20 6 93.06± 7.88 7 93.42± 8.24 7 96.09± 8.18 7 99.33± 1.01 9
AMMG,s 61.84± 9.20 17 94.87± 5.68 18 93.00± 8.95 20 96.09± 8.18 21 99.33± 1.01 27
AMMnc 61.84± 9.20 10 87.03± 3.93 13 88.23± 7.90 20 97.49± 5.06 43 99.33± 1.01 119
AMM1 82.21± 11.39 <1 94.12± 6.34 1 99.60± 0.60 1 96.03± 7.57 1 97.03± 3.66 1
AMM10ran 58.75± 31.30 4 99.47± 0.68 5 99.52± 0.45 6 99.59± 0.54 7 98.95± 1.66 10

A
M

M
m

ax

AMMEMM 74.23± 32.62 3 85.52± 17.48 4 99.67± 0.74 5 98.09± 3.09 6 92.00± 11.55 7
AMMMM 88.23± 18.56 5 97.60± 2.40 4 87.42± 27.76 6 99.42± 0.79 7 98.61± 1.69 8
AMMG 88.23± 18.56 15 88.41± 20 15 100.00± 0.00 ↑ 19 99.63± 0.66 20 98.61± 1.69 25
AMMG,s 88.23± 18.56 44 79.11± 23.90 44 100.00± 0.00 ↑ 56 99.63± 0.66 59 98.61± 1.69 75
AMMnc 88.23± 18.56 19 85.44± 19.04 21 86.17± 27.19 32 99.36± 0.74 56 98.61± 1.69 135
AMM1 75.24± 21.10 3 80.45± 10.01 4 91.83± 14.63 5 91.79± 9.05 5 88.01± 9.78 7
AMM10ran 97.54± 1.55 30 96.80± 3.94 32 99.46± 0.82 41 99.21± 0.79 47 98.54± 1.66 58

SV
M alter-∝ 52.68± 2.54 14 36.53± 10.97 16 65.54± 2.26 19 29.15± 9.60 32 86.22± 11.93 44

conv-∝ 54.31± 4.63 831 70.23± 6.58 794 52.88± 13.86 840 55.60± 11.29 659 11.58± 7.84 495
Oracle 99.69± 0.52 <1 99.80± 0.44 <1 99.60± 0.43 <1 99.80± 0.44 <1 99.78± 0.33 <1
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Figure 4: Relative AUC (wrt Oracle) vs entropy on arrhythmia
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Figure 5: Relative AUC (wrt Oracle) vs entropy on australian
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Figure 6: Relative AUC (wrt Oracle) vs entropy on breastw
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Figure 7: Relative AUC (wrt Oracle) vs entropy on colic
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Figure 8: Relative AUC (wrt Oracle) vs entropy on german
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Figure 9: Relative AUC (wrt Oracle) vs entropy on heart
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Figure 10: Relative AUC (wrt Oracle) vs entropy on ionosphere
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Figure 11: Relative AUC (wrt Oracle) vs entropy on vertebral column
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Figure 12: Relative AUC (wrt Oracle) vs entropy on vote
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Figure 13: Relative AUC (wrt Oracle) vs entropy on wine
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