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Abstract

In Learning with Label Proportions (LLP), the objective is to learn a supervised
classifier when, instead of labels, only label proportions for bags of observations
are known. This setting has broad practical relevance, in particular for privacy
preserving data processing. We first show that the mean operator, a statistic which
aggregates all labels, is minimally sufficient for the minimization of many proper
scoring losses with linear (or kernelized) classifiers without using labels. We pro-
vide a fast learning algorithm that estimates the mean operator via a manifold
regularizer with guaranteed approximation bounds. Then, we present an itera-
tive learning algorithm that uses this as initialization. We ground this algorithm
in Rademacher-style generalization bounds that fit the LLP setting, introducing
a generalization of Rademacher complexity and a Label Proportion Complexity
measure. This latter algorithm optimizes tractable bounds for the corresponding
bag-empirical risk. Experiments are provided on fourteen domains, whose size
ranges up to ~300K observations. They display that our algorithms are scalable
and tend to consistently outperform the state of the art in LLP. Moreover, in many
cases, our algorithms compete with or are just percents of AUC away from the
Oracle that learns knowing all labels. On the largest domains, half a dozen pro-
portions can suffice, i.e. roughly 40K times less than the total number of labels.

1 Introduction

Machine learning has recently experienced a proliferation of problem settings that, to some extent,
enrich the classical dichotomy between supervised and unsupervised learning. Cases as multiple
instance labels, noisy labels, partial labels as well as semi-supervised learning have been studied
motivated by applications where fully supervised learning is no longer realistic. In the present work,
we are interested in learning a binary classifier from information provided at the level of groups of
instances, called bags. The type of information we assume available is the label proportions per
bag, indicating the fraction of positive binary labels of its instances. Inspired by [1], we refer to this
framework as Learning with Label Proportions (LLP). Settings that perform a bag-wise aggregation
of labels include Multiple Instance Learning (MIL) [2]. In MIL, the aggregation is logical rather
than statistical: each bag is provided with a binary label expressing an OR condition on all the labels
contained in the bag. More general setting also exist [3] [4] [5].

Many practical scenarios fit the LLP abstraction. (a) Only aggregated labels can be obtained due to
the physical limits of measurement tools [6] [7] [8] [9]. (b) The problem is semi- or unsupervised
but domain experts have knowledge about the unlabelled samples in form of expectation, as pseudo-
measurement [5]. (c) Labels existed once but they are now given in an aggregated fashion for
privacy-preserving reasons, as in medical databases [10], fraud detection [11], house price market,
election results, census data, etc. . (d) This setting also arises in computer vision [12] [13] [14].

Related work. The setting was first introduced by [12], where a principled hierarchical model
generates labels consistent with the proportions and is trained through MCMC. Subsequently, [9] and
its follower [6] offer a variety of standard learning algorithms designed to generate self-consistent



labels. [15] gives a Bayesian interpretation of LLP where the key distribution is estimated through an
RBM. Other ideas rely on structural learning of Bayesian networks with missing data [7], and on K-
MEANS clustering to solve preliminary label assignment [13] [8]. Recent SVM implementations [11]
[16] outperform most of the other known methods. Theoretical works on LLP belong to two main
categories. The first contains uniform convergence results, for the estimators of label proportions
[1], or the estimator of the mean operator [17]. The second contains approximation results for the
classifier [17]. Our work builds upon their Mean Map algorithm, that relies on the trick that the
logistic loss may be split in two, a convex part depending only on the observations, and a linear
part involving a sufficient statistic for the label, the mean operator. Being able to estimate the mean
operator means being able to fit a classifier without using labels. In [17], this estimation relies on a
restrictive homogeneity assumption that the class-conditional estimation of features does not depend
on the bags. Experiments display the limits of this assumption [11][16].

Contributions. In this paper we consider linear classifiers, but our results hold for kernelized for-
mulations following [17]. We first show that the trick about the logistic loss can be generalized,
and the mean operator is actually minimally sufficient for a wide set of “symmetric” proper scoring
losses with no class-dependent misclassification cost, that encompass the logistic, square and Mat-
sushita losses [18]. We then provide an algorithm, LMM, which estimates the mean operator via a
Laplacian-based manifold regularizer without calling to the homogeneity assumption. We show that
under a weak distinguishability assumption between bags, our estimation of the mean operator is
all the better as the observations norm increase. This, as we show, cannot hold for the Mean Map
estimator. Then, we provide a data-dependent approximation bound for our classifier with respect
to the optimal classifier, that is shown to be better than previous bounds [17]. We also show that
the manifold regularizer’s solution is tightly related to the linear separability of the bags. We then
provide an iterative algorithm, AMM, that takes as input the solution of LMM and optimizes it fur-
ther over the set of consistent labelings. We ground the algorithm in a uniform convergence result
involving a generalization of Rademacher complexities for the LLP setting. The bound involves
a bag-empirical surrogate risk for which we show that AMM optimizes tractable bounds. All our
theoretical results hold for any symmetric proper scoring loss. Experiments are provided on four-
teen domains, ranging from hundreds to hundreds of thousands of examples, comparing AMM and
LMM to their contenders: Mean Map, InvCal [11] and xSVM [16]. They display that AMM and
LMM outperform their contenders, and sometimes even compete with the fully supervised learner
while requiring few proportions only. Tests on the largest domains display the scalability of both
algorithms. Such experimental evidence seriously questions the safety of privacy-preserving sum-
marization of data, whenever accurate aggregates and informative individual features are available.
Section (2) presents our algorithms and related theoretical results. Section (3) presents experiments.
Section (4) concludes. A Supplementary Material [19] includes proofs and additional experiments.

2 LLP and the mean operator: theoretical results and algorithms

Learning setting Hereafter, boldfaces like p denote vectors, whose coordinates are denoted p; for
I =1,2,.. Forany m € N,, let [m] = {1,2,...,m}. Let &, = {o € {~1,1}} and X C R%
Examples are couples (observation, label) € X x X1, sampled i.i.d. according to some unknown
but fixed distribution D. Let 8 = {(x;,v:),% € [m]} ~ D,, denote a size-m sample. In Learning
with Label Proportions (LLP), we do not observe directly 8 but 8, which denotes 8 with labels
removed; we are given its partition in n > 0 bags, 8, = U;8;,j € [n], along with their respective
label proportions 7; = P[y = +1|8,] and bag proportions p; = m;/m with m; = card(8;). (This
generalizes to a cover of 8, by copying examples among bags.) The “bag assignment function” that
partitions 8 is unknown but fixed. In real world domains, it would rather be known, e.g. state, gender,
age band. A classifier is a function i : X — R, from a set of classifiers 7. J{;, denotes the set of
linear classifiers, noted hg(x) = 6" x with @ € X. A (surrogate) loss is a function F : R — R,
We let F'(S,h) = (1/m) >, F(y;h(x;)) denote the empirical surrogate risk on 8 corresponding to
loss F'. For the sake of clarity, indexes 4, j and k respectively refer to examples, bags and features.

The mean operator and its minimal sufficiency We define the (empirical) mean operator as:

1
= — i 1
Bs m;yw (1)



Algorithm 1 Laplacian Mean Map (LMM)
Input 8;,7;,j € [n]; v > 0(7); w (7); V (8); permissible ¢ (2); A > 0;
Step 1 : let B™ + arg miny genxa £(L, X) using (7) (Lemma 2)
Step 2 : let fis < Y ; p; (707 — (1 —7;)b;)
Step 3 : let 0, « argming Fy(8),, 0, fis) + A||0|3 (3)
Return 6*

Table 1: Correspondence between permissible functions ¢ and the corresponding loss Fy.

loss name || Fy(x) \ —¢(z)
logistic loss log(1 + exp(—x)) | —zloga — (1 — z)log(l — x)
square loss (1—x)? (1 —x)
Matsushita loss —x+ 1+ 122 Va(l —z)

The estimation of the mean operator pg appears to be a learning bottleneck in the LLP setting
[17]. The fact that the mean operator is sufficient to learn a classifier without the label information
motivates the notion of minimal sufficient statistic for features in this context. Let J be a set of
loss functions, H be a set of classifiers, J be a subset of features. Some quantity ¢(8) is said to be
a minimal sufficient statistic for J with respect to I and J{ iff: for any F' € T, any h € I and
any two samples 8 and §8', the quantity F'(8,h) — F(8', h) does not depend on J iff ¢(8) = ¢(8').
This definition can be motivated from the one in statistics by building losses from log likelihoods.
The following Lemma motivates further the mean operator in the LLP setting, as it is the minimal
sufficient statistic for a broad set of proper scoring losses that encompass the logistic and square
losses [18]. The proper scoring losses we consider, hereafter called “symmetric” (SPSL), are twice
differentiable, non-negative and such that misclassification cost is not label-dependent.

Lemma 1 pg is a minimal sufficient statistic for the label variable, with respect to SPSL and H .

([19], Subsection 2.1) This property, very useful for LLP, may also be exploited in other weakly
supervised tasks [2]. Up to constant scalings that play no role in its minimization, the empirical
surrogate risk corresponding to any SPSL, F(8, h), can be written with loss:

¢(0) + ¢*(—x) . ¢*(—x)
_— _.a¢+- R
#(0) — ¢(1/2) by

and ¢ is a permissible function [20, 18], i.e. dom(¢) 2 [0, 1], ¢ is strictly convex, differentiable and

symmetric with respect to 1/2. ¢* is the convex conjugate of ¢. Table 1 shows examples of Fy. It
follows from Lemma 1 and its proof, that any F(80), can be written for any 6 = hg € H, as:

Fy(x) )

b 1 .
Fy(3.8) = 5= (ZZ%(M%)) — 50" 1s = Fy(8),.0.ps) . 3)

where o € X;.

The Laplacian Mean Map (LMM) algorithm The sum in eq. (3) is convex and differentiable
in 6. Hence, once we have an accurate estimator of pg, we can then easily fit & to minimize
Fy(8)y, 0, us). This two-steps strategy is implemented in LMM in algorithm 1. ps can be retrieved
from 2n bag-wise, label-wise unknown averages b;’:

n

ps = (1/2)) p; Y, @& +o(l-0)b] )
j=1 cEY,
with b7 = Es[z|o,j] denoting these 2n unknowns (for j € [n],0 € X)), and let b; =

(1/m;) > 4,es, @i- The 2n bfs are solution of a set of n identities that are (in matrix form):

B-I'B* = 0, (5)



where B = [by|ba|...|b,] T € R™¥4, 11 = [Diac(#)|Diac(1 — #)]T € R2"*" and B* € R2"*4 js
the matrix of unknowns:
-
bbb} | (©)
(BHT BT
System (5) is underdetermined, unless one makes the homogeneity assumption that yields the Mean
Map estimator [17]. Rather than making such a restrictive assumption, we regularize the cost that

brings (5) with a manifold regularizer [21], and search for BT = arg miny cpanxa £(L, X), with:

BE = |bY|by]...|b

OL,X) = tr((BT —X'I)D, (B —1II"X)) +7tr (X'LX) , (7)

and v > 0. D,, = DIAG(w) is a user-fixed bias matrix with w € R’} , (and w # p in general) and:
- La | 0 2nXx2n

L = 61—1—{0 | LE]GR , ®)

where L, = D — V € R™*" is the Laplacian of the bag similarities. V is a symmetric similarity
matrix with non negative coordinates, and the diagonal matrix D satisfies d;; = > 055, V) € [n].

The size of the Laplacian is O(n?), which is small compared to O(m?) if there are not many bags.
One can interpret the Laplacian regularization as smoothing the estimates of b7 w.r.t the similarity
of the respective bags.

Lo . - ~1
Lemma 2 The solution B to miny cponxa (L, X) is B = (IID,, 1" +~L) ~ IID,,B.

([19], Subsection 2.2). This Lemma explains the role of penalty I in (8) as D, II" and L have
respectively n- and (> 1)-dim null spaces, so the inversion may not be possible. Even when this does
not happen exactly, this may incur numerical instabilities in computing the inverse. For domains
where this risk exists, picking a small € > 0 solves the problem. Let b7 denote the row-wise

decomposition of B* following (6), from which we compute fis following (4) when we use these
2n estimates in lieu of the true b7. We compare p; = 7; b;r —(1—7;)b; ,Vj € [n] to our estimates

fij = 767 — (1 —7;)b; ,Vj € [n], granted that pis = 3= ; pjpj and fis = 32 ; Pjf;-

Theorem 3 Suppose that vy satisfies W2 < ((e(2n)7h) + max;jzj v;;)/ min; w;. Let M =
[ lppa] - |pn] T € R M= [fin]fao]..|an] T € R™™ and <(V,B*) = ((e(2n)7") +
max;; v )2 ||B*||p. The following holds:

—1
M- < ﬁ(ﬁmjmwf) X (V,B) . ©)

([19], Subsection 2.3) The multiplicative factor to < in (9) is roughly O(n°/ 2) when there is no large
discrepancy in the bias matrix D,,, so the upperbound is driven by ¢(.,.) when there are not many
bags. We have studied its variations when the “distinguishability” between bags increases. This
setting is interesting because in this case we may kill two birds in one shot, with the estimation of
M and the subsequent learning problem potentially easier, in particular for linear separators. We
consider two examples for v; -, the first being (half) the normalized association [22]:

1 ASSOC(8;,8;) ASSOC(8;/,8,/)
ne - - =N L8i), (1
Rz 2 <Assoc(5j,sj U8j)  Assoc(8;/,8; US;) ASSOC(8;,8;1) , (10)
vt = exp(—[b; = byill2/s) ;s> 0. (11

Here, ASSOC(S;,8,/) = Zmesj,m/esj, |l — 2|2 [22]. To put these two similarity measures in
the context of Theorem 3, consider the setting where we can make assumption (D1) that there
exists a small constant > 0 such that [|b; — bj/||3 > xmax, ;[|b7]13,V],j" € [n]. Thisisa
weak distinguishability property as if no such x exists, then the centers of distinct bags may just
be confounded. Consider also the additional assumption, (D2), that there exists k' > 0 such that
max; d5 < &/,¥j € [n], where d; = maxg, o/cs, [|[€; — |2 is a bag’s diameter. In the following
Lemma, the little-oh notation is with respect to the “largest” unknown in eq. (4), i.e. max, ; [|b7||2.



Algorithm 2 Alternating Mean Map (AMM®*™)

Input LMM parameters + optimization strategy OPT € {min, max} + convergence predicate PR
Step 1 : let 8y < LMM(LMM parameters) and ¢ <— 0
Step 2 : repeat
Step 2.1 : let o4 < arg OPToex, Fy(8)y, 0, pus(o))
Step 2.2 : let 8,41 < argming Fis (8,0, us(or)) + A|0]]3
Step2.3:lett «+t+1
until predicate PR is true
Return 6, = arg ming Fy (8, 0141, pus (o))

Lemma 4 There exists €, > 0 such that Ve < e, the following holds: (i) (V"¢,B%) = o(1) under
assumptions (D1 + D2); (ii) <(V&*,B*) = o(1) under assumption (D1), ¥s > 0.

([19], Subsection 2.4) Hence, provided a weak (D1) or stronger (D1+D2) distinguishability assump-
tion holds, the divergence between M and M gets smaller with the increase of the norm of the
unknowns b?. The proof of the Lemma suggests that the convergence may be faster for V&, The
following Lemma shows that both similarities also partially encode the hardness of solving the clas-
sification problem with linear separators, so that the manifold regularizer “limits” the distortion of

the l~)_is between two bags that tend not to be linearly separable.

Lemma 5 Take vj; € {vﬁ’,‘,v}”ﬁ}. There exists 0 < k; < Ky < 1 such that (i) if vjj» > Ky then
85,8, are not linearly separable, and if v;j; < k| then 8,8 are linearly separable.

([19], Subsection 2.5) This Lemma is an advocacy to fit s in a data-dependent way in vfj’,s. The
question may be raised as to whether finite samples approximation results like Theorem 3 can be
proven for the Mean Map estimator [17]. [19], Subsection 2.6 answers by the negative.

In the Laplacian Mean Map algorithm (LMM, Algorithm 1), Steps 1 and 2 have now been described.
Step 3 is a differentiable convex minimization problem for 8 that does not use the labels, so it does
not present any technical difficulty. An interesting question is how much our classifier 8, in Step 3
diverges from the one that would be computed with the true expression for g, .. It is not hard to
show that Lemma 17 in Altun and Smola [23], and Corollary 9 in Quadrianto et al. [17] hold for
LMM so that ||0, — 0,]|2 < (2\)7!||fxs — psl|3. The following Theorem shows a data-dependent
approximation bound that can be significantly better, when it holds that 8, x;, 8, z; € ¢'([0,1]), Vi
(¢ is the first derivative). We call this setting proper scoring compliance (PSC) [18]. PSC always
holds for the logistic and Matsushita losses for which ¢’([0, 1]) = IR. For other losses like the square
loss for which ¢'([0, 1]) = [—1, 1], shrinking the observations in a ball of sufficiently small radius
is sufficient to ensure this.

Theorem 6 Let fi, € R™ denote the vector encoding the Eth feature variable in 8 : fr; = Tik
(k € [d]). Let F denote the feature matrix with column-wise normalized feature vectors: fi =
(d) > |1 Fir13) @D/ CD £ Under psc, we have |10, — 6.3 < 2\ + ¢) 7| as — ps||3, with:

detF'F y 2¢~1
m b (¢'=1(q'/N))
Sor some ¢' € I = [£(x, + max{||ps||2, |fts]|2})]. Here, x. = max; ||@;||2 and ¢"" = (¢')'.

q = (>0), (12)

([19], Subsection 2.7) To see how large ¢ can be, consider the simple case where all eigenvalues of
IETIE, /\k(l:“Tf:) € [Xo & §] for small §. In this case, g is proportional to the average feature “norm”:

detF'F tr (FTF)
= +
m md

o6) = 721‘77”12””2 +0(8) .



The Alternating Mean Map (AMM) algorithm Let us denote X5 = {0 € %, : Zm cs, 0i =
(27t; — 1)m;,Vj € [n]} the set of labelings that are consistent with the observed proportions 7, and
ps(o) = (1/m) >, o;2; the biased mean operator computed from some o € ;. Notice that the
true mean operator g = pg(o) for at least one o € ¥;. The Alternating Mean Map algorithm,
(AMM, Algorithm 2), starts with the output of LMM and then optimizes it further over the set of
consistent labelings. At each iteration, it first picks a consistent labeling in >4 that is the best (OPT
=min) or the worst (OPT = max) for the current classifier (Step 2.1) and then fits a classifier 8 on the
given set of labels (Step 2.2). The algorithm then iterates until a convergence predicate is met, which
tests whether the difference between two values for Fy(., ., .) is too small (AMM™™), or the number
of iterations exceeds a user-specified limit (AMM™). The classifier returned 6, is the best in the
sequence. In the case of AMM™D™, it is the last of the sequence as risk F, (8)y, -, -) cannot increase.
Again, Step 2.2 is a convex minimization with no technical difficulty. Step 2.1 is combinatorial. It
can be solved in time almost linear in m [19] (Subsection 2.8).

Lemma 7 The running time of Step 2.1 in AMM is O(m) where the tilde notation hides log-terms.

Bag-Rademacher generalization bounds for LLP We relate the “min” and “max” strategies of
AMM by uniform convergence bounds involving the true surrogate risk, i.e. integrating the unknown
distribution D and the true labels (which we may never know). Previous uniform convergence
bounds for LLP focus on coarser grained problems, like the estimation of label proportions [1].
We rely on a LLP generalization of Rademacher complexity [24, 25]. Let F : R — R* be a
loss function and J{ a set of classifiers. The bag empirical Rademacher complexity of sample S,
R?,, is defined as R, = E,~s,, sup,csc{Eo/ns,Eslo(x)F(o’(x)h(x))]. The usual empirical

™m>

Rademacher complexity equals R, for card(X;) = 1. The Label Proportion Complexity of K is:

Loy = Eop,,Empqp :u;;})c Es[o1(z) (] (z) — frfl(w))h(w)] . (13)
€

Here, each of 37,1 = 1,2 is a random (uniformly) subset of [2m] of cardinal m. Let 8§(J7?) be the
size-m subset of § that corresponds to the indexes. Take | = 1,2 and any «; € 8. If i & J7 then

(i) = frfl(wi) is @;’s bag’s label proportion measured on 8\S(J7’). Else, 77, (x;) is its bag’s
label proportion measured on 8(J%) and ﬁfl (x;) is its label (i.e. a bag’s label proportion that would
contain only ;). Finally, o1(x) = 2 X 1:068(3/12) — 1 € X4. Lo, tends to be all the smaller as
classifiers in H have small magnitude on bags whose label proportion is close to 1/2.

Theorem 8 Suppose 3h, > 0s.t. |h(x)| < hy,Va,Vh. Then, for any loss Fy, any training sample
of size m and any 0 < 6 < 1, with probability > 1 — §, the following bound holds over all h € H:

2h, 1 2
Ep[Fy(yh(x))] < Es,Es[Fy(o(x)h(@))] + 2Ry, + Loy + 4 < s 1> \ 3,7, 108 514
¢
Furthermore, under PSC (Theorem 6), we have for any Fy:

Rl < 2y, sup (Eslo(a)(#(e) ~ (1/2)h()]} - (15)

([19], Subsection 2.9) Despite similar shapes (13) (15), an and Lo, behave differently: when bags
are pure (7; € {0,1},V4), Loy, = 0. When bags are impure (7; = 1/2,V}), an = 0. As bags get
impure, the bag-empirical surrogate risk, Ex., Eg[Fy (o (x)h(x))], also tends to increase. AMM™"
and AMM™ respectively minimize a lowerbound and an upperbound of this risk.

3 Experiments

Algorithms We compare LMM, AMM (I, = logistic loss) to the original MM [17], InvCal [11], conv-
xSVM and alter-«SVM [16] (linear kernels). To make experiments extensive, we test several ini-
tializations for AMM that are not displayed in Algorithm 2 (Step 1): (i) the edge mean map estimator,
FEMM = 1/m2(3, i) (30, i) (AMMgyy), (ii) the constant estimator fi§ = 1 (AMM;), and finally
AMM ¢y Which runs 10 random initial models (||@p]|2 < 1), and selects the one with smallest risk;
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Figure 1: Relative AUC (wrt MM) as homogeneity assumption is violated (a). Relative AUC (wrt
Oracle) vs entropy on heart for LMM(b), AMM™"(c). AUC vs n/m for AMME" and the Oracle (d).

Table 2: Small domains results. #win/#lose for row vs column. Bold faces means p-val < .001 for
Wilcoxon signed-rank tests. Top-left subtable is for one-shot methods, bottom-right iterative ones,
bottom-left compare the two. Italic is state-of-the-art. Grey cells highlight the best of all (AMME™).

algorithm MM LMM InvCal AmM™? AMM™AX conv-
G G.,s nc MM G G,s 10ran MM G G,s 10ran xSVM
s G 36/4
= Ggs 38/3 30/6
~ nc 28/12 3/37 2/37
InvCal 4/46 3/47 4/46 4/46
= MM 33/16  26/24 2525  32/18 46/4 min .. min - . . .
ES G 38/11 35/14 3020 37/13 4713 31/7 ‘/ e.g. AMMGS' wins on AMMG" 7 times, loses 15, with 28 ties
3 Gs 35/14  33/17  30/20  35/15 47/3 24/11 1s
10ran 27/22  24/26  22/28  26/24 44/6 20/30 16/34  19/31
% MM 25/25  23/27  22/28  25/25 45/5 15/35 13/37  13/37 8/42
EE G 27/23  22/28  21/28  26/24 45/5 17/33 14/36  14/36  10/40 13/14
S Gs 25/25  21/29  22/28  24/26 45/5 15/35 13/37  13/37  12/38 15/22 16/22
< 10ran 23/27 21729 19/31  24/26 50/0 19/31 15/35  17/33 7/43 19/30  20/29  17/32
= conv-o< 21/29 2/48 2/48 2/48 2/48 4/46 3/47 3/47 4/46 3/47 3/47 4/46 0/50
& alter-oc 0/50 0/50 0/50 0/50 20/30 0/50 0/50 0/50 3/47 3/47 2/48 1/49 0/50 27/23

this is the same procedure of alter-«SVM. Matrix V (eqgs. (10), (11)) used is indicated in subscript:
LMM/AMMg, LMM/AMMg s, LMM/AMM), respectively denote & with s = 1, v&* with s learned
on cross validation (CV; validation ranges indicated in [19]) and v™°. For space reasons, results
not displayed in the paper can be found in [19], Section 3 (including runtime comparisons, and de-
tailed results by domain). We split the algorithms in two groups, one-shot and iterative. The latter,
including AMM, (conv/alter)-«SVM, iteratively optimize a cost over labelings (always consistent
with label proportions for AMM, not always for (conv/alter)-ocSVM). The former (LMM, InvCal) do
not and are thus much faster. Tests are done on a 4-core 3.2GHz CPUs Mac with 32GB of RAM.
AMM/LMM/MM are implemented in R. Code for InvCal and xSVM is [16].

Simulated domains, MM and the homogeneity assumption The testing metric is the AUC. Prior
to testing on our domains, we generate 16 domains that gradually move away the b7 away from each
other (wrt 7), thus violating increasingly the homogeneity assumption [17]. The degree of violation
is measured as ||B* — B*|| , where B* is the homogeneity assumption matrix, that replaces all b7
by b? for o € {—1,1}, see eq. (5). Figure 1 (a) displays the ratios of the AUC of LMM to the
AUC of MM. It shows that LMM is all the better with respect to MM as the homogeneity assumption
is violated. Furthermore, learning s in LMM improves the results. Experiments on the simulated
domain of [16] on which MM obtains zero accuracy also display that our algorithms perform better
(1 iteration only of AMM™* brings 100% AUC).

Small and large domains experiments We convert 10 small domains [19] (m < 1000) and 4 bigger
ones (m > 8000) from UCI[26] into the LLP framework. We cast to one-against-all classification
when the problem is multiclass. On large domains, the bag assignment function is inspired by [1]:
we craft bags according to a selected feature value, and then we remove that feature from the data.
This conforms to the idea that bag assignment is structured and non random in real-world problems.
Most of our small domains, however, do not have a lot of features, so instead of clustering on one
feature and then discard it, we run K-MEANS on the whole data to make the bags, for K =n € 2051,
Small domains results We perform 5-folds nested CV comparisons on the 10 domains = 50 AUC
values for each algorithm. Table 2 synthesises the results [19], splitting one-shot and iterative algo-



Table 3: AUCs on big domains (name: #instances x#features). I=cap-shape, l1I=habitat,
=cap-colour, IN=race, V=education, Vl=country, Vll=poutcome, VIlI=job (number of bags);
for each feature, the best result over one-shot, and over iterative algorithms is bold faced.

algorithm mushroom: 8124 x 108 adult: 48842 x 89 marketing: 45211 X 41 census: 299285 x 381

1(6) 7))  HK10) | IV(S)  V(A6)  VIE2) | V@)  VI@)  VIII2) | IV(5) VIO  VI42)

EMM 55.61 59.80 76.68 4391 47.50 66.61 63.49 54.50 4431 56.05 56.25 57.87

MM 51.99 98.79 5.02 80.93 76.65 74.01 54.64 50.71 49.70 75.21 90.37 75.52
LMMg 73.92 98.57 14.70 81.79 78.40 78.78 54.66 51.00 51.93 75.80 71.75 76.31
LMMgG ¢ 94.91 98.24 89.43 84.89 78.94 80.12 49.27 51.00 65.81 84.88 60.71 69.74
AMMEnmM 85.12 99.45 69.43 49.97 56.98 70.19 61.39 5573 43.10 87.86 87.71 40.80

E AMMyy 89.81 99.01 15.74 83.73 77.39 80.67 52.85 75.27 58.19 89.68 84.91 68.36
§ AMMg 89.18 99.45 50.44 83.41 82.55 81.96 51.61 75.16 57.52 87.61 88.28 76.99
< AMMgGg 89.24 99.57 3.28 81.18 78.53 81.96 52.03 75.16 53.98 89.93 83.54 52.13
AMM| 95.90 98.49 97.31 81.32 75.80 80.05 65.13 64.96 66.62 89.09 88.94 56.72

. AMMguy 93.04 332 26.67 54.46 69.63 56.62 51.48 55.63 57.48 71.20 77.14 66.71
g AMMym 59.45 55.16 99.70 82.57 71.63 81.39 48.46 51.34 56.90 50.75 66.76 58.67
= AMMg 95.50 65.32 99.30 82.75 72.16 81.39 50.58 47.27 3429 48.32 67.54 77.46
= AMMG ¢ 95.84 65.32 84.26 82.69 70.95 81.39 66.88 47.27 34.29 80.33 74.45 52.70
AMM | 95.01 73.48 1.29 75.22 67.52 71.67 66.70 61.16 71.94 57.97 81.07 53.42
Oracle 99.82 99.81 99.8 90.55 90.55 90.50 79.52 75.55 79.43 94.31 94.37 94.45

rithms. LMMg s outperforms all one-shot algorithms. LMMg and LMMg ¢ are competitive with many
iterative algorithms, but lose against their AMM counterpart, which proves that additional optimiza-
tion over labels is beneficial. AMMg and AMMg s are confirmed as the best variant of AMM, the
first being the best in this case. Surprisingly, all mean map algorithms, even one-shots, are clearly
superior to «SVMs. Further results [19] reveal that xSVM performances are dampened by learning
classifiers with the “inverted polarity” — i.e. flipping the sign of the classifier improves its perfor-
mances. Figure 1 (b, c) presents the AUC relative to the Oracle (which learns the classifier knowing
all labels and minimizing the logistic loss), as a function of the Gini entropy of bag assignment,
gini(8) = 4E;[#;(1 — 7;)]. For an entropy close to 1, we were expecting a drop in performances.
The unexpected [19] is that on some domains, large entropies (> .8) do not prevent AMM™?" to
compete with the Oracle. No such pattern clearly emerges for xSVM and AMM™* [19].

Big domains results We adopt a 1/5 hold-out method. Scalability results [19] display that every
method using v™¢ and xSVM are not scalable to big domains; in particular, the estimated time for a
single run of alter-ocSVM is >100 hours on the adult domain. Table 3 presents the results on the big
domains, distinguishing the feature used for bag assignment. Big domains confirm the efficiency of
LMM+AMM. No approach clearly outperforms the rest, although LMMg is often the best one-shot.
Synthesis Figure 1 (d) gives the AUCs of AMMgin over the Oracle for all domains [19], as a function
of the “degree of supervision”, n/m (=1 if the problem is fully supervised). Noticeably, on 90% of
the runs, AMME™ gets an AUC representing at least 70% of the Oracle’s. Results on big domains
can be remarkable: on the census domain with bag assignment on race, 5 proportions are sufficient
for an AUC 5 points below the Oracle’s — which learns with 200K labels.

4 Conclusion

In this paper, we have shown that efficient learning in the LLP setting is possible, for general loss
functions, via the mean operator and without resorting to the homogeneity assumption. Through its
estimation, the sufficiency allows one to resort to standard learning procedures for binary classifica-
tion, practically implementing a reduction between machine learning problems [27]; hence the mean
operator estimation may be a viable shortcut to tackle other weakly supervised settings [2] [3] [4]
[5]. Approximation results and generalization bounds are provided. Experiments display results that
are superior to the state of the art, with algorithms that scale to big domains at affordable computa-
tional costs. Performances sometimes compete with the Oracle’s — that learns knowing all labels
—, even on big domains. Such experimental finding poses severe implications on the reliability of
privacy-preserving aggregation techniques with simple group statistics like proportions.
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2 Supplementary Material on Proofs

2.1 Proof of Lemma 1

For any SPSL F'(8, h), we can write it as ([2], Lemma 1, [3]):
F(8,h) = Fg(8,h)
1 _
= = Dy(uilld ™ () (1)
ma
where y; = 1iff y; = 1 and 0 otherwise, ¢ is permissible and D is the Bregman divergence with
generator ¢ [3]. It also holds that: Dy (y}||¢' = (h(x:))) = by Fy(yh(x)) with:
. ¢ (=) +¢(0) ¢*(—x)
Folw) = 2 U T0 o+ , )
([ R TCE
and ¢* is the convex conjugate of ¢, i.e. ¢*(x) = x¢' 1 (x) — ¢(¢'~'(z)). Furthermore, for any
permissible ¢, the conjex conjugate ¢*(x) verifies the property

¢*(-x) = ¢"(x)—x, 3)

and so we get that:

F(S,h)

;;quyw’-%h(mi)))

- ‘;j;&@m(mi))

_ b (Z Fo(h(a) +;F¢<ym<wi>>>

_ % <¥F¢<yih<mi>>+ZiF¢(—yz-fz<wi>>—;Ziyz-hm)) @)
_ 2% 3 Z&(yh(wi))f%mzwh(%)

ye{—1,+1} i
b 1 1
oe{—1,+1} 1 i
b 1
= o D D Fsloh(@) = Shns) - (6)
oe{—1,41} i

(4) holds because of (3), (5) holds because h is linear. So for any samples 8§ and § with respective
size m and m’, we have (again using the property that h is linear):

.0~ F(s. ) = 2 3 (; > Foloh(e) ~ S F¢<ah<wi>>>

oce{-1,+1} B TS

1
+§h‘ (“52 - u51) ) (7)

which yields the statement of the Lemma.

2.2 Proof of Lemma 2

Using the fact that D,,, and L are symmetric, we have:
0¢(L, X)
oX
- 00y (B'D,II'X) + 94 (XD, 11" X) + ”yitr (x"LX)
1. v 13).¢ v X
= —21ID,,B + 2[ID,,II' X + 29LX =0 ,

out of which Bi follows in Lemma 2.



2.3 Proof of Theorem 3

We let IT, = [D1AG(# )| D1aG(# —1)] TN an orthonormal system (n;; = (77 4 (1 — #;)3) Y2, v5 €
[n] and 0 otherwise). Let K7, be the n-dim subspace of R? generated by I1,,.. The proof of Theorem
(3) exploits the following Lemma, which assumes that ¢ is any > 0 real for L in (8) (main file) to be
> 0. When ¢ = 0, the result of Theorem (3) still holds but follows a different proof.

Lemma 1 Let A = TID,II" and L defined as in (8) (main paper). Denote for short

U = LT'A+) T ®)
Suppose there exists & > 0 such that for any © € R?", the projection of Uz in K1, Tv,o, satisfies
[zuollz < &zl - ©)
Then:
IM—Mllr < AEB*|r - (10)

Proof Combining Lemma 2 and (5), we get

B* BT = 7((A+7L)_1A71)Bi
— (L) 'a+1) ' BE . (11
Define the following permutation matrix:
P [ (I) i (I) } c R2%2n (12)

A =1IID,,II" is not invertible but diagonalisable. Its (orthonormal) eigenvectors can be partitioned
in two matrices P, and P such that:

P, = [DiAG(# — 1)|Diac(#)] N = CII, € R?"*" (eigenvalues 0) , (13)
P = IIN € R¥" (eigenvalues w;(#2 + (1 — #;)%),Vj) . (14)
We have:
M—-M = P]CB*—PJCB"

= plc((L)'a+1) B

= 1] (L) 'A+1) B (15)

— I (L'A447) T BE (16)
Eq. (15) follows from the fact that C is idempotent. Plugging Frobenius norm in (16), we obtain

~ _ _ -1
IM=M[7 = A2y (LA +y7) B

d
= 23] (LA ) T b3
k=1

IN

d
V> b3 (17)
k=1

=72¢*|BF|%

which yields (10). In (17), bf denotes column k in BE. Ineq. (17) makes use of assumption (9). W

To ensure ||zy,o|l2 < €|z
it is sufficient to show that

9, it is sufficient that ||Uz||2 < &||x||2, and since || Uz ||z < ||U||¢||z||2,

oy < 1



with Ug = LglA + &y~ 1, for relevant choices of . We have let L = (1/€)L. Let 0 < A\ (.) <

... < Aan(.) denote the ordered eigenvalues of a positive-semidefinite matrix in R?"*2"_ It follows
that, since L is symmetric positive definite, we have

—1 )\j .
NLTA) > A%((iz) (>0) ,Vj e [2n] .

We have used eq. (13). Weyl’s Theorem then brings:

A2n(Lg) <

< 19
S N+ e (L) 19

(-1
2i(Ug) ’\)2\7f((k§) otherwise
J

{ &y if jen]

Gershgorin’s Theorem brings A2, < (1/§)(e + max; >_ [l;;|), and furthermore the eigenvalues
of A satisfy \; > w,;/2,Vj > n + 1. We thus have:

2
el = e
In (19) and (20), we have used the eigenvalues of A given in eqs (13) and (14). Assuming:
MR S @
V2n
a sufficient condition for the right-hand side of (20) to be < 1 is that
¢ > STmEy 2 Mgl 22)

2y/nmin; w;

To finish up the proof, recall that L = D — V with d;; = Z]- j» vjj» and the coordinates v;;, > 0.
Hence,

Sl = 2 v

7 i

< 2nmaxv,;,Vj € [n] .
J#3’

The proof is finished by plugging this upperbound in (22) to choose &, then taking the maximal value
for v in (21) and finally solving the upperbound in (10). This ends the proof of Theorem 3.

2.4 Proof of Lemma 4

We first consider the normalized association criterion in (10):

rUJ,V,/ - l ASSOC(Sj>‘Sj) ASSOC(SJ'/’SJ'/)
7 2 \ ASSOC(8;,8;U8;)  Assoc(8;,8;U8;))
ASSOC(Sj,85) = S Je—a3 . o3
xS, €S



Remark that

2
1 1
b =bjrll3 = ||— T; — T
J 77112
m;j 3’
x; €S T €8 9
2 2 T
1 1 2
T om2 Z ] Z T ym Z i Z i
. . y 4
J wiESj 9 J’ :l:i/ESj/ 5 270 ac,,-ES_,- :ci/esj/
2 2
1 1 2 .
= —3 E Zr; + 3 E X — E xT; Ty
m:; ms, mgmg:
T ||xi€8; 9 I | €8y 9 Y mi€85,®; €81
1 , 1 ) 2
T
< E l[@ill; + E @i (|5 — E L; Ty (24)
m; mg mgm:
:l:iESj :l:lresj/ a:iESJ,a:iIES]»/
1
2
= mem E @i — i [|3
> !
77 mr;ES,-,a:i/esj/
mi — 1 2 m; — 1 2 1
+ > aill; + — > llzwlls - > ] zy
mgim; mgme mgm;
miESj :Bi/ESj/ :l)iESj,m,i/ESj/
=a
2
2
< > i — 2l (25)
m;mg s
T, €8, €S/
= ASSOC(8;,8;/) . (26)

e

n

Eq. (24) exploits the fact that (ijl

2
aj) <n (Z?zl az) and eq. (25) exploits the fact that

J

a < (mjm; )t ijes_%wi/esj/ |z; — x4 ||3. We thus have:

ASSOC(8;,8;)

ASSOC(8;,8;)

ASSOC(8;,8; US8;/)

IN

IN

ASSOC(8;,8;) + Ass0cC(§;, 8;/)
ASSOC(S;,8,)

: 27
ASSOC(5,,5,) + "7 b, — by |2 @D
/ .
e ; (28)
K'mj + =5 b — b3
_ ! 29)
1+ 52 (b; — b/ 13



Eq. (27) uses (26) and eq. (28) uses assumption (D2). Eq. (28) also holds when permuting j and 7/,
so we get:

2
e 1 !
(VN9 B*) < max|—+ : + ./ Bl
2 \2n 1+ 32 [b; — o[B8 T 1+ 2 lb; — by |3

2K/
. 2
€
< <2+ min; m; . 2) ”BiHF
no 14 =55 ming g [|b; — byl
2
2
€ 1
< = +2 S— BE||p (30)
2n? (1 + F55 ming e[|y — bj'|§) 5
2 4k'd max, ; ||b?
€ : 2
S jdmax||bj||2+ - OJH ]HQ
n* oy minj ;. [[b; — b3
2 4rk'd
<

€
—d b3 B BT
oz 1max 165 [l2 + K2 maxg,; [[b7]|2

= 1 (x5
0.
= o(l), (€29)
where the last inequality uses assumption (D1), and (30) uses the property that (a+b)? < 2a? -+ 2b.
We have let
4k'd

2
NC - €
%= = —2n2dx+ el (32)

which is indeed o(1) if ¢ = o(n?/y/x). This proves the Lemma for ¢(VVY B*). The case of

s(VEs, B*) is easier, as
eXp <_ minj//,jl// ||bj// - bjl// ||2>

b, — b
exp(—” J $J||2> ;

from assumption (D1) alone, which gives

IN

N

K
< exp (max||bj||2) ,
S o

2
G,s pt + € k
qvoem) < ¥l (5 o (<2 maxlegla) )
2
i € 2K
< 18l (s + 20w (-2 maxlegle ) )
<

dmax b7 <2€:2 +2exp <2: max |b§"|2>>
= 7 (max 051

= ol), 33)
as claimed. We have let f¢ () = %diﬂ+dﬁ exp(—2rx/s), which is indeed o(1) if € = o(n®/\/x).

Remark that we shall have in general f¢(x) < fNC(z) and even f%(z) = o(fV%(z)) ife = 0, so
we may expect better convergence in the case of V* as max, ; [|b7 |2 grows.

2.5 Proof of Lemma 5
We first restate the Lemma in a more explicit way, that shall provide explicit values for x; and x,,.

I;lemma 2 There exist k. and s, depending on d;,d;., and n;-j, > 1depending on m;, mj:, such
that:



. vafj’/s”/ > exp(—1/4) then 8 ;,8;/ are not linearly separable;
° vajj’,é“ < exp(—64) then 8,8, are linearly separable;

. vaj]\;/c > kjj then 85,8 are not linearly separable;

. vaJ]\J]/C < ﬁjj//m;j/ then 8,8 are linearly separable.

Proof We first consider the normalized association criterion in (10), and we prove the Lemma for
the following expressions of ;» and n;- e

_ 16 16

ki = 7+ 2 (34)
24aE, 2T an

,i;.j, = 512maX{mj7mj’}’ (35)

with dj;; = max{d;, d; } and d; = maxg zcs, |[€ — x'[|2, Vj # j’ € [n]. For any bag §;, we let
(b5,7;) = MEB(8;) denote the minimum enclosing ball (MEB) for bag S; and distance Lo, that
is, r; is the smallest unique real such that

3} s d(zx, b}) = [z —bi|l2 <7y, Ve €S, .

We have let d(z, b}) = ||z — b7 ||2. We are going to prove a first result involving the MEBs of §; and
87, and then will translate the result to the Lemma’s statement. The following properties follows
from standard properties of MEBs and the fact that d(., .) is a distance (they hold for any j # j'):

(@) d(z,x') <2r; ,Ya,x' €8;;

(b) If bags 8; and 8 are linearly separable, then Va € CO(§;), 3x’ € 8,7 such that d(x, ') >
max{r;,r; }; here, “CO” denotes the convex closure;

(c) If bags 8; and 8/ are linearly separable, then d(b;, b;/) > max{r;,r; }, where b; and b,
are the bags average;

(d) Ve € §;,3x" € §;s.t. d(z, x’) > rj;
(e) d(z,z') < 2max{r;,r;} +d(b},b5), YV € cO(§;), Vx' € cO(S;).
Let us define
ASSOC(S;,8;1) = > ) . (36)

TES;,x' €S/
We remark that, assuming that each bag contains at least two elements without loss of generality:
1 1

Assoc(B;,B /)
Assoc(B;,B;) 1+

oNC =

1
53’ 5 37

Assoc(B;,B /)
Assoc(B 1, B /)

1+

We have ASSOC(8;,8;) < 4m;rs and ASSOC(8;/,8;:) < 4myir?, (because of (a)), and also

ASSOC(8;,8;1) > max{m;, m; } max{r,r%} when 8; and 8, are linearly separable (because
of (b)), which yields in this case

1 1
NC
Vi < +
JJ max{mj',m./}max{rf‘.’,r?,} max{m;,m } max{r2,r2,}
2+ g 2+ s
1 1
= + . 38
T g maxldid) o, | maxtrlal) (38)

2 2
27“] 27’],,

Let us name «7,, the right-hand side of (38). It follows that when v%,c > K §; and 8,/ are not
linearly separai)le.



On the other hand, we have ASSOC(8;,8;) > m;r7 and ASSOC(8;/,8;) > m:r3, (because of (d)),
and also

ASSOC(Sj,Sj/) < mjmj/(2 max{rj,rj/} +d(b* b* ))2

g7’
< mym (4 maX{r?, 7"]2-,} + 2d2(b§7 b)) (39)
because of (e) and the fact that (a + b)? < 2a® + 2b2. It follows that Vj # j':
1 1
NC
vl > — + —— . (40
fi R 2m, (4 max{rj?,:z,}udz(bj ) ot 2m; (4max{r§,:_z,}+2dz(bj ) (40)
J 3’
For any j # j', when d* (b5, b%,) < 4max{r?,r7 }, then we have from (40):
1 1
NC
Vjj/ 2 o4 16m mjj{r?,rj?/} 91 16m; mj};{r;",r?/}
J 3’
> kg /(32max{m;,m;}) . 41
Hence, when v < k2., /(32max{m;, m;}), it implies d(b},b%,) > 2max{r;, r; }, implying

d(bj*-7 b}) > r; 4 r;, which is a sufficient condition for the linear separability of 8; and §;.

So, we can relate the linear separability of §; and §/ to the value of v]-\][-,c with respect to 7, defined
in (38). To remove the dependence in the MEB parameters and obtain the statement of the Lemma,

we just have to remark that d5/4 < r5 < 4d3,Vj € [n], which yields r;;/ /16 < K3, < Kjj.

Hence, when v¥¢ > kjjr, it follows that vﬁ/c > H;?j, and 8; and §;/ are not linearly sep-

Ji
arable. On the other hand, when vé\j’-,c < Ky /(16 x 32max{m;,m;}) = k;;/K};, then
v%,c < K%,/ (32max{m;, m; }) and the bags 8; and 8 are linearly separable. This achieves the

proof of Lemma 5 for the normalized association criterion in (10).

The proof for vfj’,s is shorter, and we prove it for

sjy = max{d;,d;y} . (42)
We have (1/2) max{d;,d;s} < max{r;,r;} < 2max{d;,d;}. Hence, because of (c) above,
if 8; and 8; are linearly separable, then vfj’,s < 1/e'/*; so, when vfj’,s > 1/e'/4, the two bags

are not linearly separable. On the other hand, if d(b;, b;,) < 2max{r;,r; }, then because of (e)
above d(bj,b;/) < 4max{r;,r;} < 8max{d;,d; }, and so ijj.,/s > 1/e%%. This implies that if
v]Gj’,S < 1/, then d(b},b%) > 2max{rj,rj} > r;j + rj:, and thus the two bags are linearly
separable, as claimed.

This achieves the proof of Lemma 2. |

This achieves the proof of Lemma 5.

2.6 Mean Map estimator’s Lemma and Proof

It is not hard to check that the randomized procedure that builds 3*"" = yx for some random « € 8

andy € {—1, 1} guarantees O(2 + ) approximability when some bags are close to the convex hull
of 8, for small v > 0. Hence, the Mean Map estimation of pts can be very poor in that respect.

Lemma3 For any v > 0, the Mean Map estimator [ﬁg/lM cannot guarantee ||ﬂg/[M —
psll2/ maxs ; |6 [l2 < 2 — 1, even when (D1 + D2) hold.

Proof Let x > 0,¢ € (0,1),p € (0,1),p # 1/2. We create a dataset from four observations,
{(z1 =0,1),(xz2 = 0,-1), (3 = x,1), (x4 = x,—1)}. There are two bags, 8; takes 1 — € of x9
and € of 1. 85 takes € of x4 and 1 — € of x3. The label-wise estimators fi” of [4] are solution of

2] - (e T ) T T

S )

1—2e €x



On the other hand, the true quantities are:

5] - ")

We now mix classes in 8 and pick bag proportions ¢ = Pg[8;] and 1 — ¢ = Pg[S2]. We have the
class proportions defined by Ps[y = +1] = eq + (1 — €)(1 — q) = p. Then

-0 )02 1)

lis — ps| =
2¢lp — €|
= ——=x
1—2¢
= 2(l—-¢q)x . (45)
Furthermore, max; |b| = . We get
lfis — ps]
— 2¢(1—gq) . 46
max; |b7| (1-q) (46)
Picking € and (1 — ¢) both > /1 — (v/2) is sufficient to have eq. (46) > 2 — ~ for any v > 0.
Remark that both assumptions (D1) and (D2) hold for any x < 1 and any " > 0. |

2.7 Proof of Theorem 6

The proof of the Theorem involves two Lemmata, the first of which is of independent interest and
holds for any convex twice differentiable function F, and not just any F. So, let us define:

F(8},.0,p) = % (;;mw%g) - %0% . (47)
where b is any fixed positive real. Define also the regularized loss:
F(8,,0,p,\) = F(8,,0,1)+ |63 . (48)
Let f;, € R™ denote the vector encoding the k** variable in 8 : fi,; = x;. For any k € [d], let
fo= (siimm) * “

denote a normalization of vectors fj in the sense that

I ae 1<d>” :

, 3
= (d > |fk|§> : (50)
k

Let V collect all vectors fk in column and V collect all vectors fj in column. Without loss of
generality, we assume V'V > 0, ie. V'V positive definite (i.e. no feature is a linear combination
of the others), implying, because the columns of V are just positive rescaling of the columns of V,

~T -~ . . . . .
that V. V > 0 as well. We use V instead of F as in the main paper, in order not to counfound with
the general convex surrogate notation F' that we use here.

Lemma 4 Given any two p and ', let 6, and @, be the respective minimizers of (8, ., i, \)
and F(8,,, ., ', \). Suppose there exists F! > 0 such that surrogate F' satisfies
F'"(+(a0, +(1—a)0.) x;) > F! Nael0,1],Vie[m] . (51)
Then the following holds:
1
2\ + 2 F'vol* (V)

em™ ©

6. — 6|2 I — w2, (52)

where vol(V) = V det V'V denote the volume of the (row/column) system of V.



Proof Our proof begins following the same first steps as the proof of Lemma 17 in [5], adding the
steps that handle the lowerbound on F. Consider the following auxiliary function A (7):

Ap(r) = (VF(S),:0..p) = VE(S),,00,1)) (r =0+ MT 6L, (53)
where the gradient V of F' is computed with respect to parameter 8. The gradient of Ap(.) is:
VAp(T) = VF(8)y,0., 1) —VF(8),,0,, 1) +2\(T—-6) , (54)
The gradient of Ay satisfies
VAp(0.) = VF(8,,0.,pu, ) —VF(8,,0., 1 \)
= 0, (55)

as both gradients in the right are 0 because of the optimality of 6, and @ with respect to
F(8y,., 1, \) and F(8,,., ', A). The Hessian H of Ap is HAp(7) = 2AI = 0 and so Ap is
convex and is thus minimal at 7 = 6,.. Finally, Ar(0,) = 0. It comes thus Ax(6,) < 0, which
yields equivalently:

0 > (VE(S}y,0.,1) — VF(S,, 0., 1) (6. —6.)+ A6, — 6.3

-
= b T 1 b /T, 1 / _pl
= <2m Z;VF(?JQ* x;) — DL Z;VF(yB* x;) + oH (6. —0,)

Y Y
+A[6. - 6413
b T
=~ om (ZZVF@OIH%) - ZZVF(ZIGLT%)> 6, —6.)
Y T y i
1 T ) .
5 (=) (6. —6,)+ A6 —O.]l5 - (56)

Let us lowerbound a. We have VF(y0] x) = yF'(y0 x)x, and a Taylor expansion brings that for
any 0., @, there exists some « € [0, 1] such that, defining

Ug,i = ylabB,+(1— a)OL)T;ﬂi , (57)
we have:
F'(y8la) = F'(y0. a;) +y(0. —0)) xiF" (uq,) - (58)
We thus get:

.
a = (ZZVF(W:%)ZZVF(W;T‘W)> 6, —9.)

Yy 7 Yy (3

(Z Z y(F'(y0] ;) — F’(yojfmi))mi> 6, —0.)

.
- (Z Z (0. — OL)TJ}iF”(UQ’Z‘)JZi> 6. —0")
= 230 8w F )

%

2F) Y (6. - 6.) ;) (59)

=2F"(0,—0.)"ss" (0, -0) , (60)

where matrix S € R%*™ is formed by the observations of 8| in columns, and ineq. (59) comes from
(51). Define T = (d/ )", ||x;]|3)SS . Its trace satisfies tr (T) = d. Let A\g > Ag—1 > ... > A\; >0

10



denote eigenvalues of T, with \; strictly positive because SST = V'V = 0. The AGH inequality
brings:

d . d—1
[Ix < (HZAk) (61)
2 k=2
() = a !
- d—1
(A=
o \d-1
d \%!
< (d—l) . (62)
Multiplying both side by A; and rearranging yields:
d—1
N> <ddl> det T (63)

Let Ao > 0 denote the minimal eigenvalue of SST. It satisfies Ao = (3, ||2;|3/d)\1 and thus it
comes from ineq. (63):

d—1 d—1
Ao > <d1> (dz) det ss”
d > lill3

d—1\%" d -2
- = det || =——— ss’
<d> GKZ%MQ ]
d—1
- <d> det V'V (64)
1

d—1
dl) vol?(¥) 65)
> ev012(\7) ) (66)

We have used notation vol(V) = V det V' V. Since (0, —0.)7ssT (0, —0.) > )0, — 6.3,
combining (60) with (66) yields the following lowerbound on a:

2 -
a > EFA/VOIQ(V)HG* A (67)
Going back to (56), we get
1 -
MO 0203~ 5 (=) (6.~ 00) + NP (D)0, 83 < 0.

Since (11— )T (8, — 8) < |l — /1|6 — 6
solving for ||0, — 07]|2:

2, we get after chaining the inequalities and

1

0, -0, < —
| Il < 2\ + 2 F/vol (V)

||IJ/ - “/”2 )

as claimed. |

The second Lemma is used to (51) when F(z) = F,. Notice that we cannot rely on strong
convexity arguments on F, as this do not hold in general. The Lemma is stated in a more general
setting than for just F' = Fj.

11



Lemma 5 Fix A\,b > 0, and let x,. = max; ||z;||2. Suppose that ||p||2 < ps for some (x> 0. Let

b T LT 2
F(81,,0,m.0) = 5 (;;F(ae mi)> — 30T A3 (68)
and let 0, = argming F(8, 8, u, \). Suppose that F(.) is L-Lipschitz. Then
bLxy + fix
0.l < == (69)

Proof Let us define a shrinking of the optimal solution 6., 8, = a8, for a € (0,1). We have

b 1
F(8),,00,p.0) = (ZZF(aelm»)—202u+x||oa||§

am (2
b T @ T 2 2
b «
< Py (ZZF(JGI%) +L |0a9*Ta:i — 00333,-’) + —50111
+2a?(6.3 (70)
b T bK(1 —«) T o, T
=5 (;;F(ae* mJ) + p- ; 10, x;| — 20* 7
+2a’[6.13 (71)

where (70) holds because F'is L-Lipschitz. To have eq. (71) smaller than F(8|y, 0., \), we need
equivalently:

bL(1 — « o 1
A0S 10T~ C0T s 2?63 < 20T+ 6L

that is:

bL(1 — «) 1-«
e 2 eTmi el < A= a?))6

(2
and to find an « € (0, 1) such that this holds, because of Cauchy-Schwartz inequality, it is sufficient
that (1 — ) (bLxx + p) < A1 — a2)||0.]|2, i.e.:
bLz. + ||l
A1+ «)

Hence, whenever ||0,||2 > (bLx, + ||p]]2) /), there is a shrinking of the optimal solution to eq. (68)
that further decreases the risk, thus contradicting its optimality. This ends the proof of Lemma 5. ll

16+]l2 >

Notice that Lemma 5 does not require F'(z) to be convex, nor differentiable. To use this Lemma,
remark that for any F,

Fia) = —(6(~2) =~ (&) () € [-1/by,0] 72
b b
forany « € ¢'([0,1]) [2], and thus F is 1/b,-Lipschitz. Finally, considering (51), for any . € [0, 1]
| £ (a8, + (1 - a)0)) @] < (allf:]l2 + (1 - )6 ]2)z.
< Tetafpfz+ 0= a)|ul
- A
.y + max{|[ |2, |12}
A )
where ineq. (73) uses Lemma 5 with b = 1/K = by. g and p' are the parameters of F'(8,, ., , \)
and F'(8,, ., ¢’, \) in Lemma 4.

(73)

IA

(74)
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Algorithm 1 Label Assignation (LA)

Input 8 € R%, abag B = {x; € R%,i = 1,2,...,m}, bag size m* € [m];
If B = () then stop
Elseif m™ ¢ (m) theny; + I(m™ =m) —I(m* =0),¥i=1,2,...,m
Else

Step 1 : i* < argmax; |0 ;|

Step 2 : y- < sign(0Tx;-)

Step 3: LA(O, B\{z;+ },mT — [(y;» = 1))

Now, going back to the parameters of Theorem 6, we make the change p — ps and p' — fig and
obtain the statement of the Theorem for interval

I = [F(ze + max{[|ps]2, [ As]l2D)] - (75)

This achieves the proof of Theorem 6.

2.8 Proof of Lemma 7

We make the proof for optimization strategy OPT = min. The case OPT = max flips the choice
of the label in Step 2. To minimize Fy (8|, 6;, us(o)) over o € ¥z, we just have to find o, €
argmaxqex, 01 >, 0;2;, and we can do that bag-wise. Algorithm 1 presents the labeling (notation
(m) ={1,2,...,m — 1}). Remark that the time complexity for one bag is O(m; logm,) due to the
ordering (Step 1), so the overall complexity is indeed O(m max; log m;).

Lemma 6 Let 0. = {0},03,...,0.,} be the set of labels obtained after running LA(0, 8, mj)for
j=1,2,...,n. Then o, € argmaxgey, 0" > 0

Proof The total edge, o7 >, oix; (forany o € ¥5), can be summable bag-wise wrt the coordinates
of o. Consider thus the optimal set {o*}5 = argmax, ¢ 1 1ym’ .17 g—2m+—m 07> . cn0ii,
for some bag B = {x;,i = 1,2,...,m'}, with constraint m™ & [m’]. This set contains the label
assignment o, returned by LA(O, B, m™), a property that follows from two simple observations:

P1 Consider any observation x; of bag B; for any optimal labeling o* of B, let m'"™ = m™* —
I(c¥ = 1). Define the set {o'*}; of optimal labelings of B\{x;} with constraint m'* =
m* — I(c} = 1). Then this set coincides with the set created by taking the elements of
{o*}3 to which we drop coordinate i. This follows from the per-observation summability
of the total edge wrt labels.

P2 Assume m™ € (m’w) Vi* € argmax; |0 x;|, there exists an optimal assignment o* such
that 0. = sign(@ ' x;-). Otherwise, starting from any optimal assignment o*, we can
flip the label of x;« and the label of any other x; for which o] # o7, and get a label
assignment that satisfies constraint m™ and cannot be worse than o*, and is thus optimal,
a contradiction.

Hence, LA(@, B, m™) picks at each iteration a label that matches one in a subset of optimal
labelings, and the recursive call preserves the subset of optimal labelings. Since when m™ & (m)

the solution returned by LA(@, B, m™) is obviously optimal, we end up when the current B is empty
with o, € argmaxgeyx, 0 >, 0ix;, as claimed. [ |

2.9 Proof of Theorem 8

We prove separately Eqs (14) and (15).
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2.9.1 Proof of eq. (14)

Notations : unless explicitly stated, all samples like 8 and 8’ are of size m. To make the reading
of our expectations clear and simple, we shall write Ep for E(4 ,)~p, Es,, for Esoys,,, Eg for
E(a:,y)NS? ED% for ES'ND and EDm for ES~D~

We now proceed to the proof, that follows the same main steps as that of Theorem 5 in [6]. For any
q € [0, 1], let us define the convex combination:

Fylg h(x)) = qFy(h(@)) + (1 = q)Fy(=h(z)) . (76)
It follows that
By, Es[Fy(o(x)h(z))] = Es[Fy(7(x), h(=))] , 77
with 7 () the label proportion of the bag to which « belongs in 8. We also have Vh,
Ep[Fs(yh(@))] < Es[Fy(n(z), h(z))] + A(S) , (78)
with
AS) = Sup {Ep[Fy(yg(x))] — Es[Fy(7(x), ()]} - (79)

Let us bound the deviations of A(8) around its expectation on the sampling of 8, using the indepen-
dent bounded differences inequality (IBDI, [7]). for which we need to upperbound the maximum
difference for the supremum term computed over two samples 8 and 8’ of the same size, such that
8’ is 8§ with one example replaced. We have:

IA(S) = A < [Bs[Fy((x), g(x))] — Bs [Fy (7' (), g(a))]| (80)

with 7t and 7’ denoting the corresponding label proportions in 8 and 8'. Let {x;} = 8\8' and
{x2} = &'\8. Letz1 € §; and z3 € 8, for some bags j and j'. Upperbound (80) depends only on
bags j and j'. For any « € (8; U 8;/)\{x1, 2}, egs. (2) and (3) bring:

[Fp(g(x)) — Fyp(—g(z))|

Fy(7(x), g(x)) — Fy(7'(x), 9(x)) <

m(x)
_ lg(=)|
~ bgm(x) @1
h*
bym(x) ’ (82)

where m(x) is the size of the bag to which it belongs in 8, plus 1 iff it is bag j’ and j’ # j, minus 1
iff it is bag j and j’ # j. Furthermore, (2) and (3) also bring:

Fy(7 (), 9(®)) = Fy(lg(2)]) + i((l = 71(@))Lg(@)>0 + 7(@)(1 = lg@)>0))lg(2)]
< Fy(0)+ é((l — (@) g@)>0 + 7(@)(1 = Lg@)>0))h"

h*
< Fy(0)+-— Yz €S$ .
by

Also, it comes from its definition that:

Fy(0) = i<o¢'*<0)—¢<¢'*(0>»

_ e (53)
by
We obtain that:
1 h* ey 1 o
IA8) —A(S)| < m<1+b“+b>+m 2 bgm(z)
¢ @ 2€(8;U8,/)\{®1,22} ¢
< @ ’ (84)
m
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where

0 = 2<2h*+1) . (85)
by

So the IBDI yields that with probability < 6/2 over the sampling of 8,

. 1 2
AGS) = Ep, sup{Ep[Fo(yg(@))] - Es[Fa(r(@), g(@))]} + Quy/5-log 5 . (86)
g
We now upperbound the expectation in (86). Using the convexity of the supremum, we have

Ep,, sup {En[Fy(yg(@))] — Es[Fo(7(z), g(z))]}
= Eop, sup {Ep: [Fs(yg(x))] — Es[Fy(7 (), g(x))]}

< Eop, o, Sup {Es/ [Fy(yg(x))] — Es[Fy(7 (), g())]} - (87)

Consider any set 8 ~ Da,,, and let I C [2m] be a subset of m indices, picked uniformly at random
among all (>™) possible choices. For any J C [2m], let 8(J) denote the subset of examples whose
index matches J, and for any « € 8(J), let 7(«|8(J)) denote its bag proportion in 8(J). For any J;
indexed by [ > 1 and any x € §, let:

s N 7 (x|S(IP)) if xe8(I7)

(@) = { 7(x|8\8(J?)) otherwise (88)

denote the label proportions induced by the split of 8 in two subsamples 8(J7?) and 8\S(J?). Let

if xe8(I7)

N Y
77\[1 (x) { 7 (x|S\S(J?)) otherwise ’ &)

where y is the true label of . Let oy(x) = 2 x 1 @2y ~ 1. The Label Proportion Complexity

(LPC) Loy, quantifies the discrepance between these two estimators. When each bag in 8 has label
proportion zero or one, each term factoring classifier & in eq. (13) (main file) is zero, so La,, = 0.

Lemma 7 The following holds true:
Ep,. o1, sup {Es/ [Fy(yg(x))] — Es[Fy(7(z), g(2))]}
< QEDW,Em Sl}le {ES [U($)F¢(ﬁ(w), h(:]:))]} + Loy, - (90)

Proof For any o € %, and any sets 8 = {x1, %2, ..., Ty} and 8’ = {x},x), ..., z,, }of size m,
denote

8o {z iff o; = 1, z; otherwise} ,
8¢ = {x}iff o; = —1,x; otherwise} = (SUS')\8¢ . 1)

and

. N To(x) if xe€Ss,
(@) = {fra(az) otherwise ’ ©2)

where 7 (.) denote the label proportions in 8, and 7&(.) denote the label proportions in 8. Let
#(.) denote the label proportions in 8, #’(.) denote the label proportions in 8’ (we know each bag to
which each example in 8’ belongs to, so we can compute these estimators), We have

Ep,, 27, sup {Es [Fy(yh(z))] — Es[Fy(7(x), h(z))]}

~ Ep,.; 50 {ESI[er’(w), h(@))] - Es[Fs(i (), hz))] — - x Al}

= Eov,.2;, sup {Esa [o(@)Fy (7' (), h())] — Es,[o () Fo (7" (2), h(x))] — Ly A1]293)
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with

Ay = Eg[((1—7"(x)ly=1 — 7' (x)1ly=—1)h(x)] ; (94)
il(x) = % (L+o(@)(z) + (1 —o(z)i(z)) ,
(@) = 5 (14 o@)ie) + (1 - o@)i (@) - ©3)
We also have from eq. (2) and (3):
Es, [o(z)Fy(7' (@), h(x))] = Es,|o(2)Fs(Fo(), h(z))] - é x Ay, (96)
Es, lo(x)Fy (7" (z), h(z))] = Es |o(x)Fs(fz(x), h(z))] — i x Az, (97)
with
Ay = Es,[o(x)(7(z) — 7o (x)h(z)] , (98)
Az = Es,lo(2)(# (@) - io(@)h()] - (99)
We also have:
Az —Ay— Ay = Eg[(fu(x) — 1y=1)h(z)] + Es[(7(x) — 7. (z)) 2 ()]
= Ay . (100)

Putting eqs (93), (96), (97) and (100) altogether, we get, after introducing Rademacher variables:
Ep,. 01,5, sup {Es/[Fs(yh(z))] — Es[Fy (7 (), h(z))]}

= Eop, ;5. sup {Es, [o(z) (7o (), h(z))] — Es[o(z) Fy(Ta(z), h(z))] + As}
< Eop,. 0.5, sup {Es, [o(x)Fy(7io(x), h(x))] — Es[o(z) Fy(Ta(z), h(z))]}
+Ep,, D1, 5,0 sup {Es/[(7(2) — 1y=1)(x)] + Es[(7(x) — 7 () ) h(2)]}

= Eo, p, 5, sup {Es/[o(x)Fy (7' (), h(x))] — Es[o(x) Fy (7 (), h(z))]}

D, 7, 5 SUP {Es [(7u (@) — Ly=1)h(@)] + Es[(7(x) — 7 (@) h(2)]} (10D
< 2Bp,z, sup {Es[o (@) Fy(7(z), h(z))]}
+Eop,, 0, 5, Sup {Es/[(7x(2) — Ly=1)h(®)] + Es[(7 () — 7. (z)) h(2)]} . (102)

Eq. (101) holds because the distribution of the supremum is the same. We also have:
Ep,,. 0, 20 SUD {Es (7 () — 1y=1)h(x)] + Es[(7(x) — 7 (z))h(2)]}

= Ep,.p,.5. sup {Es[(7(z) — 7t(x))h(@)] — Es[(1y=1 — T () h(z)]}
= EDQ,"LEJ?JQ s%p Esglo1(z) (7] (z) — frfl(a:))h(:c)] (103)

= Lopm - (104)
Eq. (103) holds because swapping the sample does not make any difference in the outer expectation,
as each couple of swapped samples is generated with the same probability without swapping.
Putting altogether (102) and (104) ends the proof of Lemma 7.

We now bound the deviations of Eg,  sup, {Eslo(x)Fys(7(x),h(x))]} with respect to its

expectation over the sampling of 8§, Ep s, sup;, {Es[o(x)Fy(7(x), h(x))]}. To do that, we use
a third time the IBDI and compute an upperbound for

‘ Es,. supy {Es, [0(2) Fy (7 (2), h(z) ])%

x

~Ex,, sup, {Es, [o(2) Fy(7(), h(z))]}
sup, (Es, [0(@) Fy( (@), h(x))])

< B || e ey e | 10s)
sup, {Es, [o(z) Fy (7 (), h(z))]} Q1

< “z”‘{ = sup, (B o(@) Fol7(2), h(z)]} H S (109
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where ()1 is defined in eq. (85). Eq. (105) holds because of the triangular inequality. Ineq. (106)
holds because |o(.)| = 1. So with probability < §/2 over the sampling of 8,

Ex,, sup {Eslo (@) Fy(7(z), h(z))]}

< Ep,, 0 (Bslo(@)Fo(r(@) he))]} - Quyf5loss . (107

where )1 is defined via (84). We obtain that with probability > 1 — ((6/2) + (6/2)) = 1 — 4, the

following holds Vh:

Ep[Fy(yh(z))] < Es[Fy(n(z), h(z
< BslFy(i(e), hiz

)] 4+ A(8) (see (78) and (79))

)
N +Ep,, sup {Eon [Fy(yg())] — Es[Fy (7 (2), g(x))]}

+@Q1 = (from (86))
Es[Fy(7 (w), h(z))] +Eo,, o, Sup {Es/ [Fy(yg(x))] — Es[Fy (7 (), g(x))]}

l\D
—_
]

IA

1 g (from (87))

):h(@))] + 2Eop,, 5, SHP{ES[ (@) Fy(7 (), 9(®))]} + Lam

+Q1
Es[Fy(

1\9
OQ
>

(

IN
>
8

l\D
ﬁ
SN

+Q1 log = (Lemma (7))
Es[Fy(7(x), h(x))] + 2Es,, sup {Eslo(z)Fy(7(x), h(x))]} + Lom

IN
>

+2Q, (from (107))

A 2h, 1 2
_ b -
=Ex, Es[Fy(o(x)h(x))] + 2R,, + Lom +4 ( by ) \/ 5 log 5

2.9.2 Proof of eq. (15)

We have F),(z) = —(1/bg))(¢*)'(—x) = —(1/bg)(¢') " (=) € [~1/by, 0], and thus Fy is 1/by-
Lipschitz, so Theorem 4.12 in [8] brings:
R?n(F7 77) = ]EO'NEm }Sugl-)( {EzN[m] [UiEa"NE,} [F¢(0’£h(a}1> - 77)“}
1S
< byEons,, SUp {Eifm[0iBoins, [oih(x:) — n]]}
heJ

ﬁ

as claimed.

= byEs~sx,, SUDP {EiN[m] [0:Eo oy, [U;h(mz)]]}
hedt

= byEo~s,, SUp {Eixpmloi (27 (2;) — 1)h(x:)]}
hed

as claimed.

3 Supplementary Material on Experiments

3.1 Full Experimental Setup

All mean operator algorithms have been coded in R. For «SVM and InvCal, we used a Matlab!
implementation from the authors of [1]. The ranges of parameters for cross validation are A = X'm
with X € {0} U10{01.2} ~ € 10-121.0} 5 € 2-{2.1.0} for mean operator algorithms. We ran all

"https:/github.com/felixyu/pSVM
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experiments with D,, = I and € = 0. Since we tested on similar domains -6 are actually the same-
ranges for InvCal and ««SVM were taken from [1]. To avoid an additional source of complexity
in the analysis, we cross-validated all hyper-parameters using the knowledge of all labels of the
validation sets; notice that labels at validation time generally would not be accessible in real world
applications.

3.2 Simulated Domain for Violation of Homogeneity Assumption

The synthetic data generated for this test consists on 16 classification problems, each one formed
by 16 bags of 100 two-dimensional normal samples. The distribution generating the first dataset
satisfies the homogeneity assumption (Figure 1 (a)). Then, we gradually change the position of the
class-conditional bag-conditional means on one linear direction (to the right on Figure 1 (b) and (¢)),
with different offsets for different bags. In Figure 1 we give a graphical explanation of the process
with 3 bags.

U S s a4 A: a " k B A“: A r "
2 Py &3}“= 2] 0 &8 u‘{inl- . 2{ o &% L ah o A&
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2y PRYY Y label > A label
20 K, .5olbel_1 L0 lo.ns ‘fﬁ‘: 1 20 h:" 3 —‘A ' _1T
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ot a o ° 41 ...L o o 41 .-.. . 4o +1
4 bag ~ bag A bag
-2 o " o 1 -21 ° o 1 —21 * o 1
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= 3 = 3 = 3
25 00_ 25 50 00 25 50 75 0 5 10
X1 X1 X1
(a) (b) (©)

Figure 1: Violation of homogeneity assumption

3.3 Simulated Domain from [1]

The MM algorithm was shown to learn a model with zero accuracy prediction on the toy domain of
[1]. We report here in Table 1 performance of all mean operator algorithms measured in transductive
setting, training with cross-validation. Although none of the distances used in our experiments in
LMM leads reasonable accuracy in the toy dataset, AMM™ initialised with any starting point learns
in one step a model which perfectly classifies all the instances. We also notice that EMM returns an
optimal classifier by itself (not reported in Table 1).

Table 1: AUC on the toy dataset of [1]

H AMMmin AMM™ax

EMM 100.00  100.00
MM 846  100.00
LMMg 8.46 100.00
LMMg;¢ 8.46 100.00
LMMpc 846  100.00
1 8.46  100.00
10ran 100.00  100.00

3.4 Additional Tests on alter-o«SVM [1]
In our experiments, we observe that AUC achieved by ««SVM can be high, but it is also often below

0.5; in those cases the algorithm outputs models which are worse than random and the average
performance over 5 test folds drops. We are able to reproduce the same behaviour on the heart
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dataset provided by the authors in a demo for alter-o«SVM; this also proves our bag assignment for
LLP simulation does not introduce the issue. In a first test, we randomly select 3/4 of the dataset,
and randomly assign instances to 4 bags of fixed size 64, following [1]. We repeat the training split
50 times with C' = C),, = 1, as in the demo, and we measure AUCs on the same training set. As
expected, a consistent number of run (22%) ends up producing AUC smaller than 0.5. We display
in Figure 2 (a) the AUC’s density profile, which shows a relevant mass around 0.25; notice also the
two distribution modes look symmetric around 0.5.

In a second test, we investigate further measuring pairs of training set AUC and loss value obtained
by the same execution of the algorithm. In this case, we run over all parameters ranges defined in
xSVM’s paper, and do not pick the model that minimizes the loss over the 10 random runs, but
record losses of all. Figures 2 (b) and (c) show scatter plots relative to two chosen training set splits.
We observe that loss minimization can lead both to high and low AUCs, with only few points close
to 0.5. A possible explanation might be in the inverted polarity of the learnt linear classifier; inverted
polarity in this contest means having a model which would achieve better performance classifying
instances labels opposite to the ones predicted. We conclude that optimizing ccSVM’s loss in some
cases might be equivalent to train a max-margin separator of the unlabelled data, which only exploits
weakly the information given by the label proportions. This would give a heuristic understanding of
the frequent symmetrical behaviour of the AUC.
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Figure 2: alter-«SVM: empirical distribution of AUC (a), and relationship between loss and AUC
in two different train spit (b)(c)

3.5 Scalability

Figure 3 (a) shows runtime of learning (including cross-validation) of MM and LMM with regard to
the number of bags — which is the natural parameter of time complexity for our Laplacian-based
methods. Although the 3 layers of cross-validation of LMMgs, LMM, results the only method
clearly not scalable. Figure 3 (b) presents how our one-shots algorithms scale on all small domains
as a function of problem size. Runtime is averaged over the different bag assignments. The same
plot is given in Figure 3 (c) for iterative algorithms, in particular AMM™ and (alter/conv)-xSVM.
All curves are completed with measurements on bigger domains when available. Runtime of SVMs
is not directly comparable with our methods. This is due to both (a) the implementation on different
programming languages and (b) to the fact that the code provided implements kernel SVM, even for
linear kernels, which is a big overhead in computation and memory access. Nevertheless, the high
growth rate of conv-o<SVM makes the algorithm not suitable for large datasets. Noticeably, even if
alter-«SVM does not show such behaviour, we are not able to run it on our bigger domains, since it
requires approximately 10 hours to run on a training set split with fixed parameters.

3.6 Full Results on Small Domains

Finally we report details about all experiments run on the 10 small domains (Table 2). In the fol-
lowing Tables, columns show the number of bags generated through K-MEANS. Each cell contains
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Figure 3: Learning runtime of LMM for bags number (a), and for domain size one-shot (b) and
iterative methods (c)

Table 2: Small domains size

dataset [ instances feature
arrhythmia 452 297
australian 690 39
breastw 699 11
colic 368 83
german 1000 27
heart 270 14
ionosphere 351 37
vertebral column 620 9
vote 435 49
wine 178 16

average AUC over 5 test splits and standard deviation; runtime in second is in the separated column.
Best performing algorithm and ones not worse than 0.1 AUC are bold faced. Comparisons are made
in the respective top/bottom sub-tables, which group one-shot and iterative algorithms. We use 1 to
highlight runs which achieve average AUC greater or equal than the Oracle.
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Table 3: arrhythmia

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 70.91 £ 6.81 2 | 50.55 +7.54 2 | 50.31 +7.55 2 | 47.03 £ 6.60 2] 5234+725 2
MM 64.99 + 2.99 2 | 60.48 +7.28 1| 68.17 £5.95 2 | 70.01 £9.33 2| 72.85 +9.49 2
LMMg 64.99 + 2.99 18 | 68.10 £ 4.43 17 | 71.53 £ 2.36 20 | 72.06 £ 7.62 18 | 76.29 £ 7.91 20
LMMG ¢ 64.99 + 2.99 49 | 68.34 &+ 3.95 49 | 71.53 4 2.36 54 | 72.06 £ 7.62 52 | 76.29 £+ 7.91 57
LMMpc 64.99 + 2.99 83 | 61.19 £ 7.53 83 | 70.21 £5.17 119 | 70.89 + 9.86 267 | 73.82 +£9.29 854
TnvCal 64.75 + 3.04 17 | 66.12 4= 260 17 | 60.87 £ 3.54 17 | 44.46 £3.36 17 | 56.36 + 5.26 17
AMMEgmm 59.54 +7.52 9 | 52.65 £ 3.10 8 | 63.46 £+ 10.37 8 | 67.85 £9.56 8 | 75.65 £ 8.81 8
_ AMMyy 57.29 +£5.95 7 | 60.00 & 7.96 4 | 70.12 £ 6.46 4| 73.66 + 8.86 5| 7836 £ 853 5
£ AMMg 58.15 + 6.83 31 | 68.80 £ 2.15 28 | 73.08 + 2.92 30 | 74.54 £7.98 29 | 80.32 £ 8.08 30
§ AMMG ¢ 56.67 + 4.66 92 | 69.83 £ 2.69 84 | 73.08 £ 2.92 88 | 73.34 £ 7.62 83 | 80.32 + 8.08 91
< AMMp¢ 57.29 +5.95 97 | 59.71 +8.39 90 | 71.43 £6.21 126 | 73.49 £ 8.95 274 | 78.04 £ 8.26 862
AMM| 65.80 £ 6.92 5| 70.00 + 5.89 4| 6817 £7.19 4| 69.93 £ 427 4| 7231 £5.02 5
AMM (pan || 54.09 £ 12.03 30 | 55.78 £ 17.36 32 | 66.38 £ 7.32 51 | 66.89 £ 6.75 51 | 73.61 £5.15 57
. AMMgyy 50.59 + 5.97 41 | 59.32 £5.82 41 | 60.85 £ 5.43 37 | 60.38 4= 4.08 41 | 58.31 + 8.40 40
2 AMMyy 62.08 + 9.46 45 | 46.86 & 3.90 34 | 67.28 £ 8.92 33 | 74.04 +9.46 35 | 71.00 £ 7.65 38
é AMMg 62.08 + 9.46 141 | 62.27 +8.14 128 | 65.78 +3.92 118 | 64.64 £ 10.26 121 | 73.07 £ 6.72 124
Z AMMG 62.08 £ 9.46 414 | 63.13 £5.17 380 | 63.85 4 7.00 346 | 65.49 £ 10.62 354 | 73.05 4+ 6.70 374
AMMpc 62.08 + 9.46 206 | 55.57 £ 6.07 182 | 64.30 4= 6.24 207 | 76.33 £ 3.96 362 | 70.82 £ 4.23 965
AMM| 60.53 +9.79 31 | 54.14 £13.28 34 | 67.45 £391 32 | 55.85 £ 8.96 35| 61.26 £6.95 38
AMM opan || 49.79 £ 8.14 307 | 55.37 & 14.62 370 | 53.78 +5.13 301 | 60.62 4 8.04 322 | 6420 +2.84 338
= alter-oc 49.24 +£3.92 96 | 57.10 & 2.71 100 | 56.38 4= 2.73 104 | 3531 = 1.30 114 | 38.68 4 6.10 125
7, conv-o< 54.15 +2.22 2054 | 34.82 + 3.20 2078 | 38.31 + 8.24 2168 | 61.96 & 1.10 1930 | 48.77 +5.73 2004
Oracle 99.99 £ 0.02 2 | 99.98 + 0.05 2 [99.94 £0.13 2 | 100.00 £ 0.00 2 | 99.97 +0.07 2
Table 4: australian
algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 66.48 + 3.16 <l | 64.67 =422 <1 | 63.56 & 4.00 <1 | 64.17 £ 4.80 <1 | 63.14 =541 <1
MM 81.08 + 1.66 <1 | 87.11 2.68 <1 | 87.49 +2.86 1| 8736 +£2.22 <1 | 89.53+2.13 2
LMMg 81.08 + 1.66 4 | 87.09 £ 2.82 4 | 87.81 £ 3.16 5| 88.46 +2.50 6 | 89.69 + 2.68 8
LMMG, g 81.08 £ 1.66 14 | 87.81 £ 3.08 15 | 87.88 +3.21 19 | 89.18 + 2.05 20 | 90.80 £ 2.53 27
LMMp¢ 81.08 + 1.66 57 | 87.02 £2.72 49 | 87.46 £ 3.03 57 | 88.06 £ 2.31 90 | 89.41 £ 2.41 217
Invcal 19.67 £ 2.23 5 | 59.50 &+ 5.86 5 | 68.00 &+ 5.27 5| 60.83 + 3.17 5| 51.81 +£4.72 5
AMMEym 86.65 + 2.06 4 | 86.59 + 3.08 4 | 86.50 £ 4.11 4] 89.51 £248 6| 8885+4 6
AMMyy 87.54 + 3.84 3| 84.35+3.63 4 | 86.99 + 3.87 4| 8943+ 134 4| 89.55+3.18 5
g AMMg 87.54 + 3.84 10 | 84.79 +3.17 13 | 86.78 4 4.21 14 | 89.52 £ 2.18 14 | 89.88 +2.78 18
§ AMMG ¢ 87.54 + 3.84 30 | 85.12£3.75 39 | 86.75 £ 4.19 43 | 90.37 £ 1.67 43 | 89.95 4 2.80 54
< AMMp¢ 87.54 + 3.84 63 | 85.10 £ 3.55 57 | 86.63 4 4.02 66 | 89.00 £ 1.83 97 | 90.11 £ 2.93 227
AMM; 72.60 + 5.70 2 | 85.04 £2.53 3 | 86.89 + 3.73 4 | 8891 +2.32 4 | 88.98 £ 3.00 4
AMM|opan || 79.21 £ 5.07 27 | 80.97 £2.27 31 | 85.08 4 3.30 34| 89.19 £ 1.81 46 | 87.70 £ 2.68 47
. AMMgpyy 80.09 + 3.99 17 | 71.46 £+ 1.85 16 | 73.41 £ 6.07 16 | 7325 £3.33 18 | 81.73 £ 3.60 19
g AMMyy 86.83 + 4.26 20 | 72.96 £ 2.30 15 | 70.25 £+ 4.65 16 | 73.89 £5.77 18 | 75.91 £ 3.50 21
§ AMMg 86.83 +4.26 61 | 7332 £ 1.95 48 | 71.16 4= 4.94 51 | 73.57 4+ 6.86 55 | 75.25 £3.18 63
< AMMG 86.83 + 4.26 181 | 73.25 +2.03 143 | 71.19 £ 4.91 153 | 74.77 £ 6.85 163 | 7525 +3.18 188
AMMp¢ 86.83 + 4.26 114 | 73.74 +2.48 92 | 70.36 £+ 5.16 102 | 75.16 + 5.71 138 | 76.44 +2.74 272
AMM; 69.57 + 3.99 15 | 73.12 £ 341 15 | 68.25 + 2.80 16 | 71.02 + 5.46 17 | 81.70 & 3.02 19
AMM g || 77.82 £ 9.12 192 | 68.82 + 4.73 138 | 73.58 & 4.29 146 | 7221 £9.35 164 | 74.16 £ 5.25 188
= alter-o< 53.26 +2.07 25 | 51.08 £ 235 27 | 50.90 + 1.63 31 | 4829 £ 451 38 | 41.66 £ 5.11 64
7, conv-oc 77.80 + 6.16 3924 | 66.14 + 4.68 3790 | 57.94 + 18.54 3244 | 61.37 £ 21.17 3327 | 63.73 £ 11.33 3603
Oracle 92.81 +2.89 <1 [ 92.68 +224 <1 [ 9244 £3.01 1] 92.61 £2.03 <1 ] 9299 +3.58 <1
Table 5: breastw
algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 48.65 £ 7.54 <1 | 71.45 £ 16.59 <1 | 61.68 £ 7.47 <1 | 34.88 £12.33 <1 | 47.50 £22.77 <1
MM 99.42 + 0.44 2| 99.30 + 0.39 <1 | 99.28 £ 0.25 <1 | 99.28 +0.37 <1 | 99.18 + 0.47 1
LMMg 99.42 + 0.44 6| 99.33 +0.38 31 99.28 +0.25 3] 99.35 +0.39 3] 99.22 4+ 0.46 4
LMMgG ¢ 99.42 + 0.44 20 | 99.34 £+ 0.39 10 | 99.37 £ 0.24 1 11 | 99.36 £+ 0.38 12 | 99.23 £ 0.44 15
LMMpc 99.42 + 0.44 41 | 99.29 + 0.40 39 | 99.27 +0.25 41 | 99.30 4 0.38 59 | 99.20 + 0.47 125
Tnvcal 19.67 +2.23 5 | 59.50 + 5.86 5| 68+£527 5 | 60.83 +3.17 5| 51.81 £472 5
AMMEgmm 99.37 £+ 0.42 1] 99.33 +£0.39 1]99.17 £0.54 1] 99.34 £ 0.40 219929 £ 049 2
AMMyy 99.34 + 0.46 2| 99.30 + 0.37 1] 99.36 +0.27 21 99.29 +0.41 21 99.29 +0.48 2
§ AMMg 99.34 £ 0.46 8 | 99.30 + 0.37 51 99.36 + 0.27 1 6| 99.29 + 0.41 7 | 99.30 + 0.49 8
= AMMG g 99.34 + 0.46 23 | 99.30 £ 0.37 1 16 | 99.36 + 0.27 19 | 99.29 + 041 20 | 99.30 4= 0.49 25
< AMMpc 99.34 £ 0.46 43 | 99.31 +0.35 41 | 99.36 £ 0.27 1 44 | 99.29 £ 0.41 62 | 99.29 £ 0.48 129
AMM| 99.35 + 0.45 <1 | 99.32+0.37 1] 99.20 + 045 1] 99.30 + 0.42 1] 99.314+0.48 2
AMM|(pan || 99.36 £ 0.45 8 | 99.11 £ 0.56 91 99.26 + 035 11 | 99.28 £+ 043 11 | 99.32 +0.49 1 14
AMMEyvm 99.42 + 0.55 6 | 99.02 £ 0.66 6| 9932+ 0251 6 | 9943 £0.30 1 7 | 99.40 £ 0.38 1 9
. AMMyy 99.01 + 1.12 6 | 99.00 & 0.64 6] 9932+ 0351 6 | 99.37 4+ 0.38 7| 99.39 +0.39 9
g AMMgG 99.01 + 1.12 20 | 98.99 + 0.64 17 | 99.33 £ 0.35 1 18 | 99.37 £+ 0.38 21 | 99.41 £ 0.39 1 27
= AMMG 99.01 + 1.12 60 | 98.99 + 0.64 52 | 99.19 + 045 55 | 99.37 + 0.39 63 | 99.41 + 0.39 1 82
E AMMp¢ 99.01 £ 1.12 55 | 98.99 £ 0.64 53 | 99.32 £ 0351 56 | 99.37 + 0.39 76 | 99.40 £ 0.38 1 148
AMM | 99.09 + 1.08 51 99.09 + 0.46 51 99.29 + 0.26 51 99.37 +0.38 6| 99.40 + 0.38 8
AMM|(pan || 98.97 £+ 1.29 47 | 98.58 +0.75 48 | 99.39 £+ 0.27 1 52 | 99.37 4+ 0.38 61 | 99.36 + 0.41 1 81
= alter-oc 68.63 + 17.63 24 | 93.24 +4.43 25| 75.17 £ 7.19 33 | 90.11 4= 2.58 42 | 18.23 £5.67 82
7, conv-oc 99.41 £ 0.48 3346 | 56.33 £4.28 3043 | 77.71 £ 15.51 2800 | 32.90 4 7.24 3036 | 67.21 £ 8.19 2037
Oracle 99.48 £ 0.41 <1 ]99.53+0.41 <1 {9931 %037 <1 | 9943 £039 <1 |99.3240.44 <1
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Table 6: colic

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 60.69 + 11.30 <1 | 51.83 £ 6.36 <1 [ 52.99 +5.37 <1 [ 53.83 £ 11.49 <1 [ 5295+ 13.28 <1
MM 62.00 £+ 6.44 <1 | 70.48 £ 7.43 <1 | 67.13£9.85 2 | 72.60 +9.35 1| 72.05 £3.38 1
LMMg 62.00 £ 6.44 7| 70.37 £ 7.47 6 | 72.15 £ 8.51 8 | 75.96 £ 10.38 8 | 7547 £3.59 9
LMMG ¢ 62.00 + 6.44 20 | 72.10 £ 6.26 20 | 75.08 + 7.14 28 | 78.54 £ 10.20 26 | 76.43 £ 3.10 27
LMMpc 62.00 + 6.44 31 | 70.45 £ 7.46 33 | 68.38 £ 9.69 52 | 74.04 £ 10.02 112 | 72.87 + 3.20 345
Tnvcal 38.73 + 543 6 | 6587 £+ 6.70 6 | 59.30 +3.28 6 | 61.54 £4.17 6 | 59.53 4 10.00 6
AMMEgMmm 59.12 + 8.86 3 | 56.23 £ 8.49 3 [ 7093 £10.31 3 | 78.22 £ 6.00 3| 74221635 4
AMMyy 77.44 £ 3.16 2| 78.84 £ 6.95 3| 69.46 & 6.44 4| 7193 £ 761 4| 81.44+£5.18 4
E AMMg 77.44 £ 3.16 11 | 79.41 £2.23 12 | 72.62 £ 5.42 14 | 77.80 £ 8.11 14 | 84.05 +2.33 16
§ AMMG 5 77.44 £ 3.16 34 | 79.41 £2.23 36 | 71.19 £ 5.38 41 | 76.71 4 6.70 40 | 83.27 £ 3.14 47
< AMMpc¢ 77.44 £ 3.16 36 | 7833 £7.35 38 | 70.95 £ 4.69 57 | 74.67 £9.10 117 | 79.86 + 4.87 352
AMM| 38.69 + 7.18 1| 56.07 & 14.68 2 | 75.14 £ 4.78 2| 75.36 + 5.64 3 | 77.51 £ 5.00 3
AMM o || 37.63 + 4.19 10 | 77.75 £+ 5.66 12 | 7495 £ 5.64 15 | 76.59 £ 10.81 17 | 78.94 £ 4.17 23
. AMMgyy 50.94 + 6.54 9 | 62.44 +£9.94 9 | 57.53 £ 13.37 15 | 53.63 £ 14.71 17 | 67.63 +5.63 19
2 AMMyy 43.05 £ 14.65 8 | 75.40 + 4.64 9 | 63.72 £ 14.41 16 | 55.37 £ 10.19 18 | 69.49 £ 3.17 20
2 AMMg 43.05 £ 14.65 28 | 78.19 £5.93 31 | 63.14 £ 753 51 | 61.32 4+ 5.69 57 | 68.21 £ 9.35 62
E AMMG 5 43.05 £ 14.65 84 | 77.91 4+ 6.36 91 | 62.57 £ 6.11 151 | 64.42 4+10.77 168 | 69.47 £ 6.40 184
AMMpc 42.92 + 14.74 52 | 73.74 £ 7.21 57 | 60.39 4+ 12.21 94 | 62.46 + 15.13 162 | 68.63 4= 2.37 381
AMM| 51.92 +19.91 7 | 59.89 & 10.79 8 | 58.76 & 12.16 14 | 6231 £13.32 17 | 68.25 £ 6.42 18
AMM jopan || 56.39 £ 10.26 60 | 71.28 £ 8.76 68 | 65.01 £ 13.85 114 | 69.59 + 9.96 139 | 74.40 + 5.54 159
g alter-oc 46.33 £2.73 18 | 50.82 £ 1.21 19 | 60.84 £ 5.51 23 | 62.20 +3.79 32 | 57.04 4 10.10 49
» conv-ox 25.27 + 3.45 1438 | 35.96 £ 9.34 1460 | 50.31 £ 5.57 1439 | 35.46 £ 9.11 1423 | 50.13 4= 8.34 1427
Oracle 86.19 +4.23 <1 | 87.80 £ 2.50 <1 | 87.05 £ 6.05 <1 | 86.53 £7.15 <1 | 87.97 £2.02 <1

Table 7: german

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 47.90 £ 4.51 <I | 50.11 +5.17 <1 | 46.02 4+ 5.88 <1 | 50.94 £ 1.61 <1 | 51.02+255 <1
MM 61.07 £+ 5.57 <1 | 62.09 & 4.00 <1 | 65.50 & 6.54 2 | 65.61 & 6.05 2 | 66.96 + 4.56 2
LMMg 61.07 £+ 5.57 4| 62.14 £ 4.04 4 | 67.07 £ 6.36 6 | 66.43 + 6.61 6 | 70.18 + 4.76 7
LMMgG ¢ 61.07 £ 5.57 11 | 62.75 +3.32 12 | 67.91 £ 5.80 16 | 66.40 £ 6.90 19 | 70.43 £ 5.57 21
LMMp¢ 61.07 £ 5.57 103 | 62.04 £ 4.00 87 | 65.47 £ 6.56 87 | 65.61 &£ 6.06 113 | 67.01 & 4.58 209
Invcal 38.74 + 5.43 6 | 65.87 + 6.70 6 | 59.30 +3.28 6 | 61.53 +4.17 6 | 59.54 + 10.00 6
AMMEumy 53.89 + 6.82 7 | 48.63 +8.71 7 | 53.24 +£8.02 8 | 57.58 £3.44 9 | 63.64 £11.82 11
AMMym 60.45 + 5.58 5 | 63.33 £ 4.99 6 | 74.58 £ 4.76 6 | 7243 £ 1.39 8 | 75.84 £5.24 7
g AMMg 60.45 + 5.58 17 | 64.16 + 6.99 18 | 74.18 £ 4.34 21 | 72.08 £ 1.24 22 | 75.94 1+ 4.55 24
§ AMMG ¢ 60.45 + 5.58 52 | 64.20 £ 7.24 57 | 74.29 £ 4.50 57 | 72.18 £ 1.37 66 | 75.77 + 4.44 74
< AMMp¢ 60.45 + 5.58 118 | 63.20 £ 6.09 101 | 75.37 + 4.42 100 | 72.53 £1.25 130 | 75.99 + 5.26 225
AMM; 37.08 & 4.42 3 | 38.53 £297 3 | 41.89 £2.07 6 | 41.13 +2.58 9 | 47.09 £ 9.40 10
AMM opan || 49.12 £ 6.50 36 | 60.31 £5.57 38 | 73.82 £4.70 44 | 7207 £3.22 54 | 7473 £ 4.54 72
. AMMgyy 46.45 £+ 3.30 18 | 46.31 £ 3.02 19 | 67.34 £ 13.42 19 | 7241 £ 6.17 20 | 74.58 £+ 4.63 22
g AMMyy 52.47 + 8.88 18 | 58.61 &+ 12.19 18 | 65.14 4 21.84 19 | 74.90 £ 4.86 20 | 74.88 £3.75 22
Z AMMg 52.47 4+ 8.88 54 | 56.12 £ 12.25 53 | 74.93 £+ 8.18 57 | 73.87 £ 4.55 60 | 75.43 +4.02 67
E AMMG ¢ 52.47 + 8.88 160 | 54.79 & 11.61 158 | 74.84 £ 8.12 167 | 73.87 £ 4.55 180 | 75.40 & 4.05 197
AMMp¢ 52.47 + 8.88 154 | 49.24 4 12.68 137 | 65.11 4 21.84 137 | 74.89 £ 4.75 167 | 74.70 + 3.71 269
AMM| 58.39 + 13.20 17 | 61.04 £ 14.43 17 | 69.66 + 16.93 17 | 76.49 + 3.29 18 | 75.44 +3.65 20
AMM opan || 50.47 £ 9.69 168 | 56.78 £ 10.89 164 | 60.41 £ 15.48 160 | 61.62 £ 18.81 170 | 73.25 £ 6.97 191
= alter-o< 49.36 £ 1.68 34 | 49.59 £ 1.58 37 | 4843 £223 40 | 48.85 £ 1.55 47 | 51.05 +£2.72 64
7, conv-oc 29.70 + 2.03 6031 | 64.15 + 5.43 6343 | 63.01 4+ 2.59 6362 | 62.01 £ 3.61 6765 | 63.17 £ 3.62 7004
Oracle 79.43 £2.88 <1 | 78.95 +3.99 <1 | 79.18 £ 1.70 <1 | 7942 +280 <1 ] 79.02 +3.62 <1

Table 8: heart

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 51.82 £ 12.39 <1 | 50.43 £+ 23.03 <1 | 55.09 £ 19.44 <1 | 4955 +1747 <1 | 63.49 £ 18.11 <1
MM 68.75 £ 6.09 <1 | 60.24 £+ 13.54 <1 | 80.35+9.42 <1 | 76.11 & 6.66 1 | 83.50 £ 6.22 1
LMMg 68.75 + 6.09 3| 68.04 +8.53 3| 82.87 +6.16 4 | 8292 +1.28 4 | 8585+ 3.84 6
LMMG 68.75 £ 6.09 9 | 69.04 + 6.52 12 | 83.68 + 5.90 13 | 82.96 +1.79 14 | 86.36 + 3.94 17
LMMpc 68.75 + 6.09 11 | 60.40 + 14.18 12 | 80.24 +9.74 189 | 78.14 4+ 4.98 42 | 84.47 £ 5.06 119
Tnvcal 28.84 + 4.96 4| 70.58 + 6.45 4 | 37.33 £10.31 4 | 44.96 £ 9.64 4 | 62.76 £ 15.05 4
AMMEgyvm 60.50 £ 30.88 <1 | 63.36 & 28.50 1] 72.05+19.17 1 | 80.87 £ 1551 1| 91.63 £ 6.10 t 2
AMMyy 86.59 + 6.14 1| 80.57 +16.72 1| 87.96 &+ 4.50 2| 90.04 +5.14 2| 9145+ 5701 2
E AMMg 86.59 + 6.14 5| 86.70 + 5.45 5| 87.46 +2.67 6 | 91.06 + 2.87 7 | 91.55 +5.93 9
= AMMG g 86.59 + 6.14 15 | 86.70 +5.45 16 | 88.31 4= 4.00 18 | 90.86 + 2.81 21 | 91.55 +5.93 1 27
< AMMpc 86.59 £ 6.14 13 | 78.97 £ 16.78 14 | 87.82 £ 4.42 21 | 90.48 £ 3.53 45 | 91.25 £5.77 125
AMM| 90.62 + 5.82 <1 | 89.19 &+ 5.90 1| 88.64 +£3.21 1] 90.78 4+ 2.10 1]91.03+582 1
AMM|(pan || 78.38 £ 30.44 5| 8732+ 471 6 | 89.85 + 231 7 | 91.02 + 2.49 9 | 90.47 +6.39 14
. AMMgyy 85.74 + 13.28 3 | 84.60 £ 10.87 4 | 84.60 £ 7.84 3 18983+272 5 | 71.65 £ 18.52 6
g AMMyy 85.35 £ 11.06 4| 8243 +9.76 4| 90.49 +4.75 4| 89.92 +£2.90 89.35 4 6.98 7
= AMMg 8535 + 11.06 13 | 87.18 £ 6.56 13 | 90.49 + 4.75 13 | 89.58 +2.79 16 | 88.55 £9.71 23
E: AMMG g 85.35 + 11.06 39 | 90.49 + 5.05 40 | 90.58 + 4.77 40 | 89.58 +£2.79 49 | 89.94 + 6.63 67
AMMpc 85.35 £ 11.06 20 | 8273 £9.23 21 | 89.84 £4.24 30 | 90.06 £ 3.20 54 | 89.54 & 6.60 140
AMM| 7277 £ 37.27 4| 89.31 +3.99 3| 89.68 +3.79 319062+ 3.18 5| 87.97 +9.42 6
AMM|(pan || 89.96 £ 5.62 32 | 89.93 £5.02 31 | 88.03 £3.16 30 | 90.80 £ 3.61 38 | 89.61 + 8.68 54
= alter-oc 4775 £ 17.58 15 | 59.72 &+ 18.21 16 | 62.32 4+ 12.83 20 | 58.49 4 10.98 27 | 48.33 +12.77 47
2, conv-oc 46.18 £ 43.41 1211 | 87.13 £5.30 1185 | 69.03 £ 23.18 1197 | 4278 £ 23.51 1188 | 50.34 £ 15.75 1080
Oracle 91.72 £ 3.95 <1 | 91.22 + 4.09 <1 | 91.27 £288 <l | 91.54 £2.76 <1 |9142+5.46 <1
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Table 9: ionosphere

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 4428 £12.13 <1 [ 51.86 = 8.01 <1 [ 50.69 + 6.34 <1 [ 44.60 £ 3.91 <1 [ 4891 £ 11.73 <1
MM 64.81 + 8.82 <1 | 7774 +£523 1| 7895+ 7.36 1 | 86.76 £ 2.96 1| 88.13 £4.16 2
LMMg 64.81 + 8.82 5| 80.80 £ 2.32 6 | 83.46 £ 4.62 5| 87.12+£223 7 | 88.24 £ 4.41 7
LMMgG ¢ 64.81 + 8.82 14 | 82.12 £2.50 15 | 83.24 +£4.84 15 | 87.23 +£1.57 17 | 87.99 £ 4.58 21
LMMpc 64.81 + 8.82 20 | 79.39 £2.12 22 | 81.18 £ 6.40 32 | 87.05 £ 248 68 | 88.34 +4.32 182
Invcal 35.34 + 8.76 5 | 44.78 £ 15.37 5 | 53.28 £+ 9.02 5 | 53.52 4+ 851 5| 54.08 £9.53 5
AMMEgmm 56.77 + 6.42 2 | 85.07 =524 2 | 86.04 +5.21 2 | 86.81 £ 3.81 2 | 86.71 £ 3.54 3
_ AMMynm 46.67 £ 8.53 3 | 84.52 + 4.60 2 | 84.23 £ 6.67 2 | 8592 £4.48 3 | 87.77 £ 5.56 3
£ AMMg 46.67 £ 8.53 10 | 85.05 £ 4.11 9 | 8528 +6.19 9 | 8597 +3.19 11 | 8885 +£5.15 12
§ AMMG 5 46.67 £ 8.53 28 | 84.63 £ 3.80 26 | 85.28 £ 6.19 27 | 86.01 £ 4.37 30 | 88.85 £5.15 36
< AMMpc 46.67 £ 8.53 24 | 85.16 + 4.39 26 | 84.77 + 6.45 36 | 85.96 £ 4.50 72 | 87.57 +5.23 174
AMM| 51.47 + 13.46 1 | 83.65 £ 3.89 2 | 87.51 £ 4.24 2 | 86.76 £ 4.07 2 | 87.83 £5.05 2.11
AMMpan || 56.92 £ 22.42 10 | 80.39 £ 6.36 11 | 85.89 £5.52 12 | 87.32 £3.17 13 | 87.81 £ 6.52 15
AMMEgmm 57.99 + 8.96 10 | 76.31 +5.29 10 | 82.07 =447 11 | 86.99 +7.23 11 | 87.08 +5.86 12
;"f‘ AMMym 74.57 + 18.16 10 | 75.32 +4.74 10 | 78.65 +7.93 11 | 88.84 +3.10 12 | 90.01 & 5.50 13
= AMMg 74.57 + 18.16 32 | 78.06 £ 5.11 33 | 83.24 £ 6.54 35 | 89.98 £3.08 1 38 | 88.41 £5.94 41
5 AMMG 5 74.57 + 18.16 96 | 79.21 £ 4.58 98 | 83.36 £ 6.61 104 | 90.88 + 3.11 1 112 | 88.41 £5.94 121
AMMpc 74.57 + 18.16 47 | 75.80 £ 5.14 50 | 80.22 4+ 6.95 61 | 88.05 4247 99 | 89.19 545 198
AMM| 65.53 + 17.30 10 | 77.29 + 6.63 9 | 82.10 £7.95 10 | 85.45 4+ 3.31 11 | 89.01 +7.02 12
AMM (pan || 65.05 £ 16.59 85 | 79.60 &+ 6.56 82 | 78.56 + 4.77 88 | 88.44 £3.22 94 | 89.37 £ 6.67 109
= alter-o< 43.07 £ 6.05 22 | 4458 +4.95 24 | 69.24 +4.99 27 | 67.72 £ 12.25 55 | 59.67 &+ 7.01 49
5; conv-oc 36.67 + 7.44 1316 | 44.55 £ 9.58 1280 | 57.84 +5.98 1788 | 65.93 £ 3.90 887 | 47.58 £+ 11.29 1287
Oracle 90.07 £ 5.04 <1 | 89.99 +423 <1 | 90.08 £ 5.50 <1 | 89.42 £ 6.34 <1 ]9022+5.17 <1
Table 10: vertebral column
algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 57.91 £ 22.04 <1 | 59.05 & 10.46 <1 |5143+£17.22 <1 | 4539 £ 23.81 <1 | 61.30 £+ 17.86 <1
MM 7745 £ 6.14 <1 | 7897 +3.54 <1 | 79.85+4.14 <1 | 8274 %211 1| 8745+ 357 1
LMMg 7745 + 6.14 3| 78.34+282 3| 81.93 +3.81 3| 87.52 4271 519043 +3.20 6
LMMG 7745 % 6.14 9 | 7834 +282 8 | 83.87 + 3.63 9 | 87.71 +2.56 13 | 91.06 + 3.00 14
LMMpc 7745 £ 6.14 31 | 7843 £2.74 31 | 80.02 £ 4.02 35 | 83.50 £ 2.46 54 | 88.10 £ 3.57 122
InvCal 33.74 + 24.95 4 | 3646 £ 5.27 4 | 7254 £5.79 4| 61.89 +6.25 4] 5991 + 8.79 4
AMMEgmum 81.07 £ 8.12 2 | 78.56 & 8.66 2 | 90.56 +3.44 2| 92.08 +1.78 2| 93.14 £2.04 3
AMMym 75.64 + 5.02 2 | 68.54 +4.90 2 | 87.10 = 4.16 2 | 92.66 + 1.99 3193504 1.93 3
g AMMg 75.64 £5.02 6 | 69.27 £ 5.69 7 | 87.57 +4.48 8 | 92454 1.89 10 | 93.59 £+ 1.83 11
§ AMMG ¢ 75.64 £ 5.02 19 | 69.27 £ 5.69 22 | 87.86 £ 4.62 23 | 91.04 £3.82 30 | 9297 £ 1.58 32
< AMMp¢ 75.64 £5.02 34 | 68.49 £ 4.86 35 | 88.33 £5.17 39 | 91.26 £+ 3.98 59 | 93.70 £ 2.09 127
AMM; 74.49 + 6.08 1| 68.66 +4.92 1| 90.60 £ 3.18 2| 9241 +1.58 2| 9295+ 1.75 2
AMM (ran || 7642 £ 4.80 12 | 75.75 &£ 5.07 16 | 92.59 4 0.22 18 | 92.15 £ 1.44 15 | 9246 + 1.79 19
. AMMgyy 76.02 £ 12.70 4 | 7842 £ 14.14 5| 87.87 +1.94 5 | 87.88 +3.29 6| 90.71 £ 2.79 8
g AMMum 7531 + 13.69 5| 87.22+3.13 5| 87.43 +2.59 6 | 88.85 +2.39 6 | 90.29 + 247 9
Z AMMg 75.31 £ 13.69 15 | 73.91 £ 16.06 17 | 87.89 £+ 1.97 17 | 87.98 £3.27 21 | 90.29 £ 2.47 28
E AMMG ¢ 75.31 £ 13.69 44 | 67.48 £ 16.70 50 | 87.89 4+ 1.97 51 | 87.98 +3.27 63 | 90.18 £ 3.26 82
AMMpc 75.31 £ 13.69 43 | 82.97 £+ 8.05 45 | 87.85 4 2.00 49 | 88.91 £+ 2.41 70 | 90.29 £ 2.47 144
AMM| 77.35 + 13.61 4 1 70.14 +17.19 5 | 84.17 £ 2.66 5| 89.12+231 6 | 90.94 £ 3.06 8
AMM gpan || 72.39 & 14.33 36 | 8249 +9.32 47 | 87.44 £+ 152 47 | 85.79 + 4.54 50 | 90.87 4 2.53 69
= alter-oc 40.88 £ 5.80 21 | 30.17 £ 7.47 23 | 68.26 £ 6.40 26 | 58.84 4 21.21 33| 37.17 £ 17.48 48
5, conv-oc 77.72 £ 6.23 3624 | 72.28 + 8.88 2292 | 36.21 £ 8.38 2328 | 45.01 4 14.91 2481 | 70.49 £ 5.59 2306
Oracle 93.80 £ 1.06 <1 [ 93.83 + 1.67 <1 [ 93.89 +1.89 <1 [ 9383+ 1.62 <1 | 94.00 + 1.42 <1
Table 11: vote (feature physician-fee-freeze was removed to make the problem harder)
algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 5432 +8.79 <1 | 4547 £ 15.63 <1 | 46.88 & 6.06 1| 55.20 £ 18.03 1] 53.93 £10.59 1
MM 94.56 + 2.04 1] 9537+262 2 | 95.65 + 0.85 219633+ 1.19 2| 96.74 £ 1.50 2
LMMg 94.56 + 2.04 7| 9593 +247 8| 9587+ 1.12 8 | 96.41 £ 1.51 9 | 96.94 + 1.67 10
LMMgG ¢ 94.56 + 2.04 20 | 96.03 + 2.42 22 | 96.00 + 1.18 23 | 96.38 - 1.99 25 | 96.81 £ 2.09 28
LMMpc 94.56 + 2.04 28 | 95.83 +2.34 31 | 95.71 +0.92 43 | 96.23 + 1.58 85 | 96.81 £ 1.50 234
Invcal 94.85 + 1.71 4| 73.10 £2.21 4 | 77.86 +4.92 4| 2674 £+ 6.82 4| 79.77 £+ 6.25 4
AMMEgmum 93.67 + 1.84 2 | 95.04 £3.01 2 | 96.18 + 0.78 2 | 96.43 £+ 1.31 2 | 96.94 £+ 1.62 3
AMMym 93.48 + 231 2| 95124289 3| 96.10 + 0.82 3] 96.15 + 1.31 4| 97.30 + 1.58 4
§ AMMgG 93.48 + 231 10 | 95.61 & 1.90 12 ] 95.92 £+ 1.02 11 | 96.41 £ 1.12 13 | 97.36 £ 1.47 15
= AMMG g 93.48 +2.31 29 | 94.87 4+ 3.02 33 | 95.34 +0.98 35 | 96.11 4 1.30 39 | 97.36 £ 1.47 46
< AMMpc 93.48 + 231 32 | 95.38 +2.38 35 | 95.81 + 1.01 46 | 96.03 + 1.48 89 | 97.38 £ 1.45 238
AMM | 93.57 + 1.99 2| 94.32+3.36 2 | 96.25 + 0.66 2| 96.17 £+ 1.20 2| 96.83 + 142 2
AMM|(pan || 93.84 £ 2.23 11 | 94.59 £+ 3.56 11 | 95.85 £ 0.97 12 | 96.63 £+ 1.32 15 | 96.66 £ 1.70 18
. AMMgyy 91.68 + 0.81 11 | 9497 £2.24 12 | 9494 £+ 1 13 | 95.83 £ 1.36 14 | 96.60 4= 1.31 15
g AMMyy 92.47 + 0.38 12 | 93.43 4+ 4.07 13 | 93.71 4+ 1.34 14 | 9540 £+ 1.10 15 | 96.77 £ 1.31 17
§ AMMgG 92.47 +0.38 40 | 94.34 £+ 2.65 34 | 94.03 £+ 0.81 43 | 95.65 4+ 1.70 48 | 96.45 £ 1.52 53
< AMMgG 92.47 + 0.38 124 | 94.22 +2.87 127 | 94.03 4 0.81 132 | 96.01 4 1.83 142 | 96.37 4 1.39 160
AMMpc 92.47 +0.38 65 | 94.96 4 3.48 66 | 94.07 £ 0.78 78 | 95.14 £ 1.18 124 | 96.74 £+ 1.31 275
AMM | 91.60 + 1.29 11 | 9448 £2.14 12 | 9434 £ 0.82 12 | 9536 + 1.56 13 | 96.54 £ 1.51 15
AMMjoran || 9049 = 2.02 101 | 94.59 + 2.85 103 | 94.19 £ 0.73 104 | 95.73 £ 1.83 112 | 9621 + 1.67 128
= alter-oc 51.58 +3.27 19 | 62.74 +4.27 21 | 60.88 4 3.50 25 | 63.01 £9.51 33 | 41.87 £ 7.12 57
5, conv-oc 5.63 £+ 2.03 1848 | 47.22 +4.92 1807 | 19.62 + 5.91 1855 | 57.54 £ 11.22 1598 | 46.27 £+ 9.48 1281
Oracle 97.11 £+ 1.31 <1 |9743£225 <1 | 97.06 £ 0.87 <1]9733+£138 <1 | 97524149 <1

23



Table 12: wine

algorithm 2 bags 4 bags 8 bags 16 bags 32 bags
AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s) | AUC time(s)
EMM 70.38 + 20.39 <1 [ 56.72 £ 29.85 <1 | 55.42 £ 20.70 <1 | 6582 %2145 <1 | 46.85 £ 16.71 <1
MM 66.45 4 5.42 1| 8241 +676 1| 85.28 +4.80 1| 9035 +3.73 1| 95.57 4245 1
LMMg 66.45 + 5.42 4| 89.72 £3.73 51 90.69 £ 5.30 5| 94.09 £ 3.45 5| 97.74 £ 0.67 6
LMMg ¢ 66.45 + 4.412 13 | 93.32 +2.94 13 | 92.68 + 6.06 14 | 95.53 +2.40 15 | 97.69 & 0.90 19
LMMp¢ 66.45 + 5.42 9 | 84.00 £ 5.48 11 | 86.30 + 4.18 18 | 91.10 = 4.52 40 | 96.28 £ 2.06 116
Invcal 58.96 + 5.77 6 | 81.38 +4.59 6 | 55.18 +9.59 6 | 63.07 + 12.61 6 | 71.01 £+ 18.19 6
AMMeyy || 80.27 £ 18.08 T [ 90.33 £ 8.87 1 [ 9146 £ 10.59 1| 88.97 £ 6.26 1| 8834 £2279 2
AMMym 61.84 +9.20 2 | 8556 £7.20 1| 88.70 £ 8.31 2| 9378 £9.12 2 | 98.66 £ 1.11 2
E AMMg 61.84 +9.20 6 | 93.06 £ 7.88 7| 9342 £8.24 7 | 96.09 £ 8.18 7 | 99.33 £+ 1.01 9
§ AMMG 5 61.84 +9.20 17 | 94.87 +5.68 18 | 93.00 + 8.95 20 | 96.09 + 8.18 21 | 99.33 + 1.01 27
< AMMpc 61.84 + 9.20 10 | 87.03 +3.93 13 | 88.23 +£7.90 20 | 97.49 4 5.06 43 | 99.33 £ 1.01 119
AMM| 8221 + 11.39 <1 | 94.12 £ 634 1| 99.60 + 0.60 1] 96.03 %757 1| 97.03 £ 3.66 1
AMM {(ran 58.75 + 31.30 4| 99.47 £ 0.68 51 99.52 £ 045 6 | 99.59 £ 0.54 7 | 98.95 £ 1.66 10
_ AMMpyy || 7423 £ 3262 3| 855241748 4| 99.67 +0.74 5| 98.09 4 3.09 6| 92.00 4 11.55 7
£ AMMyym 88.23 + 18.56 51 97.60 £ 2.40 4 | 87.42 42776 6 | 99.42 4+ 0.79 7 | 98.61 £ 1.69 8
E AMMg 88.23 + 18.56 15 | 88.41 +20 15 | 100.00 £ 0.00 19 | 99.63 + 0.66 20 | 98.61 + 1.69 25
< AMMGg 88.23 + 18.56 44 | 79.11 £ 23.90 44 | 100.00 + 0.00 T 56 | 99.63 £ 0.66 59 | 98.61 + 1.69 75
AMMpc 88.23 4 18.56 19 | 85.44 4 19.04 21 | 86.17 4 27.19 32 | 99.36 & 0.74 56 | 98.61 & 1.69 135
AMM| 75.24 + 21.10 3 | 80.45 £ 10.01 4 1 91.83 4 14.63 5| 91.79 £ 9.05 5| 88.01 £9.78 7
AMM {(ran 97.54 + 1.55 30 | 96.80 + 3.94 32 | 99.46 4 0.82 41 | 99.21 +0.79 47 | 98.54 £ 1.66 58
= alter-oc 52.68 +2.54 14 | 36.53 &+ 10.97 16 | 65.54 +2.26 19 | 29.15 +9.60 32 | 86.22 +11.93 44
2 conv-oc 5431 4+ 4.63 831 | 70.23 + 6.58 794 | 52.88 + 13.86 840 | 55.60 + 11.29 659 | 11.58 +7.84 495
Oracle 99.69 + 0.52 <1 | 99.80 £ 0.44 <1 | 99.60 £ 0.43 <1 | 99.80 £ 0.4 <1 | 99.78 £033 <1
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Figure 4: Relative AUC (wrt Oracle) vs entropy on arrhythmia
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