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Abstract

Matching and registration of shapes is a key issue in
Computer Vision, Pattern Recognition, and Medical Im-
age Analysis. This paper presents a shape representation
framework based on Gaussian curvature and Markov ran-
dom fields (MRFs) for the purpose of shape matching. The
method is based on a surface mesh model in R3, which
is projected into a two-dimensional space and there mod-
eled as an extended boundary closed Markov random field.
The surface is homeomorphic to S®. The MRF encodes
in the nodes entropy features of the corresponding sim-
ilarities based on Gaussian curvature, and in the edges
the spatial consistency of the meshes. Correspondence be-
tween two surface meshes is then established by perform-
ing probabilistic inference on the MRF via Gibbs sampling.
The technique combines both geometric, topological, and
probabilistic information, which can be used to represent
shapes in three dimensional space, and can be generalized
to higher dimensional spaces. As a result, the representa-
tion can be used for shape matching, registration, and sta-
tistical shape analysis.

Notation

e M — manifold;

e W — Weingarten curvature matrix;

e E, F, G — coefficients of the first fundamental form;
e ¢, f, g — coefficients of the second fundamental form;
e s —single site;

e S —set of sites of s, a finite index set;

e 1, — state for site s;

e X, — a finite space of states x5 for every single site
s€S;
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e x —one instance of configuration = = (x4)ses;

e X —space of configurations of z, X = Hses Xs;

e J(s) —neighborhood of site s;

e () — collection of subsets of S forall s € S, Q =
{0(s)}ses:

e (5,9Q) —random field graph;

o (5, QY) — sample instance graph;

e (' —set of cliques in graph (S, Q);

e (' — complement of C'

e (V, E) — a graph defined based on edges and vertices;

e K, K’ — vectors in R™ for curvatures defined on base
random field and sample instance respectively.

1. Introduction

The effectiveness of shape representation directly affects
shape matching and registration results. Invariance, unique-
ness, and stability are the desired properties for an effec-
tive and efficient representation [33]. There are two main
research lines for shape representation currently. One is re-
gion based, and the second is contour or boundary based.
Among the contour based shape descriptors, one popular
representation is to interpret the boundary information as
a signal in 2, 3, or high dimensional spaces, and then by
transformation, the shape information can be encoded in the
transformation coefficients, for example, the Fourier series
for 2D [44], and spherical harmonics for 3D [36, 18]. More
recently an approach based on discrete Fourier coefficients
of the boundary values is proposed in [21]. The method is
named Shape Signature Harmonic Embedding, and its prin-
ciple is to solve a harmonic function embedded in a circular
disk with a discrete Poisson kernel and Dirichlet boundary



condition. Other descriptors that have been investigated in-
clude wavelets [39, 35], shape contexts [1], and geomet-
ric properties based shape representations, especially, cur-
vature scale space [30, 6, 40, 46].

Curvature scale space is another popular shape descrip-
tor, and has been selected as contour-based shape descrip-
tor for MPEG-7. Although it has shown superior perfor-
mance over other descriptors [33], for example in contour
based image indexing and retrieval [31], it is mainly used
for shape description for still image and video. As one ex-
ample, it has been successfully used as a feature vector to
retrieve images from multimedia databases by calculating
the maxima of curvature zero-crossing contours, and then
to carry out the matching by using the similarity measure of
the maxima [32].

However, to date, using curvature to represent shape for
3D models has not been investigated as much as for image
and video. Though some pioneering work on 3D shape rep-
resentation and matching has been done [45, 22], the work
on how to represent and match shapes for 3D surfaces while
preserving both geometric and topological properties is still
thin. How to effectively represent shape in three dimen-
sional space and use the representation for shape matching
and statistical analysis is currently still an active research
area [9, 7, 41].

In this paper, we propose a boundary based shape rep-
resentation approach for 3D surfaces by unifying local ge-
ometric properties of Gaussian curvature and Markov ran-
dom fields for the purpose of shape matching. The frame-
work is based on a surface mesh in R3. The mesh is pro-
jected into a two dimensional space embedded in Z2 and
modelled as an undirected graph of an extended boundary
closed random field, which preserves both geometric and
topological information of the underlying shape. The geo-
metric entropy is measured in graph nodes based on Gaus-
sian curvature obtained in the original space, and the spa-
tial pairwise distance is evaluated in the projected space.
The correspondence is established by a probability mea-
sure with optimization based on Gibbs-Markov equivalence
whose energy function is defined with Gaussian curvature
and pairwise spatial distances. The probabilistic inference
is performed using Gibbs sampling. The techniques can
also be used for statistical shape analysis, 3D shape reg-
istration, and 3D model indexing and retrieval.

The main contribution of this paper is the shape repre-
sentation framework that projects the local geometric prop-
erty of Gaussian curvature of a 3D surface mesh into an
extended boundary connected random field, where the cor-
respondence matching is carried out. Gaussian curvature is
an intrinsic property of a 3D surface embedded in R?, and
it is invariant for a locally isometric map between two sur-
faces. After the projection, both geometric and topological
information is preserved in the extended Markov random

field. As such, the energy function defined for the corre-
spondence matching can incorporate both Gaussian curva-
ture difference projected from the original space and spatial
pairwise distance defined on the random field.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the Gaussian curvature computation and
projection of surface meshes to MRF. Section 3 describes
the energy function for correspondence. In Section 4, the
relationship between probability measure and the energy
function is established based on the Hammersley-Clifford
Theorem. Section 5 describes the algorithm of the Gibbs
sampler. Finally experimental results and conclusions are
presented in Section 6 and 7 respectively.

2. Intrinsic Geometric Properties of Gaussian
Curvature

Curvature is a local measure of geometric properties, and
can be used to represent local shape information. We focus
on Gaussian curvature, as it is one of the fundamental sec-
ond order geometric properties of a surface. According to
Gauss’s Theorema Egregium [38], Gaussian curvature is in-
trinsic. For a local isometric map f : M — M’ between
two surfaces, it remains invariant. Therefore, in this paper
we will use Gaussian curvature as a criterion for similarity
measure between graph nodes in the projected space where
an extended boundary connected Markov random field is
embedded. The representation satisfies invariance, unique-
ness, and stability criteria required for a shape descriptor as
described in [33].

2.1. Gaussian Curvature Estimation

Let T, M be the tangent space, n(x) be the unit normal
at a point p on a manifold M, and P be a two-dimensional
subspace of T, M. The curvature of M at p can be inter-
preted as a map,

k:{PyeT,M}—R.

The first and second fundamental forms can be defined
as follows [38],

I(p)(Uvap) = (Up,Vp>, (D
]I(p)(Up, Vp) = _<vUpn7 Vp>7 2

where Uy, V, C T,M, —Vy,n : T,M — T,M is the
Weingarten map, and (-, -) is the Riemannian metric on the
manifold M.

Suppose a local parameterization for M C R? is a coor-
dinate patch o(y, ) :  — M, where Q C R? is an open
domain, then a surface can be defined as a map from R?2
to R?, o(w) = (z(p,v),y(u,v),2(u,v))T C R3, where
w € . Given vectors o, and o, the normal vector on the



surface can be obtained locally by,

o X oy
B = oo T

Let the surface metric be ds? = > Guvdpdy, and n
be the unit surface normal as defined above, then the cor-
responding first and second fundamental forms for o are
Edp? + 2Fdudy + Gdv? and edp? + 2fdudyv + gdv?,
where, E, F, G,are 0, - 0,0, -0y, and 0, - 0, and e, f, g
are o, - n, 0, - 1, and o, - n respectively. The principal
curvatures ki and k5 at a point p are the eigenvalues of the
following Weingarten curvature matrix,
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The Gaussian curvature x = ki ko, is the product of the
principal curvatures at the point p. It is estimated based on
the principal curvatures using local charts.

For a surface mesh, a local 3D coordinate frame is
formed with its origin at the vertex, and its coordinate axes
as the normal vector and two arbitrary orthogonal axes in a
plane perpendicular to this vector.

2.2. Curvature in Scale Space

Curvature is naturally associated with scale space, and
it manifests different values in different scales. In order to
estimate curvatures under different scales, the original sur-
faces are smoothed first with a smooth kernel with differ-
ent variances. It can be performed by convolving the sur-
faces with a rotationally symmetric smooth mask of differ-
ent variance. Curvatures are then calculated based on the
smoothed surfaces accordingly. The different sizes of the
mask will generate curvatures at different scales.

Let m be a surface. Its linear scale-space representation
is a family of derived surfaces M (7) defined by convolution
of p, p € m, with a smooth kernel g(p; 7) [23],

M(t)={p*g(p;7) | p € m} “4)

In the case of Gaussian, the kernel is g(p;7) =
Wexp(—pr/Qr), and 7 is referred to as the scale
parameter. The square root of the scale parameter 7 is the
standard deviation of the Gaussian kernel.

It has been shown that the solution of the scale-space
family can be obtained equivalently by solving the diffusion
equation [19],

1 1
SAM = 5zamjwzzwt, 5)

=1

with initial condition M (0) = m, the original surface.

The Gaussian curvature x at a point p on a derived sur-
face M is a function of the scale parameter 7, corresponding
to different scales upon choosing different 7.

2.3. Correspondence Matching and Projection to
MRF

Given two surfaces M and M’, if amap f : M —
M’ is locally isometric, then according to Gauss’s The-
orema Egregium, for a point p € M and its correspon-
dence p’ € M/, its Gaussian curvature is preserved, that
is, k(p) = k(p'). It means that assuming two surfaces M
and M’ are locally isometric, then there is a smooth map
f : M — M’, which is a diffeomorphism and preserves
the Gaussian curvature. Therefore, by taking Gaussian cur-
vature as a similarity measure criterion, the correspondence
matching problem can be formulated as an optimization of
a function whose minimum corresponds to the best match
between the two surfaces.

We will not perform the correspondence matching be-
tween M and M’ directly, since it is not easy to capture
both geometric and topological information. Rather we will
use Markov random field techniques to capture the stochas-
tic nature of the surface, and incorporate the topological in-
formation of the mesh neighborhood structure. Therefore,
we will do a projection from the original surface space to a
Markov random field first.

A manifold with discrete structure, in the case of a
meshed surface embedded in R?, forms a discrete topolog-
ical space. Let F' be an extended boundary closed random
field with Markovian property, and assume M and F' are
both topologically equivalent to S2. A boundary closed
Markov random field is a discrete surface with boundary
connected. Then the projection of M to F' can be defined
as a map,

p: M — F,

which is a homeomorphism.

The homeomorphism follows because the map is a 1-1
onto function and both ¢ and its inverse ¢! : F — M
are continuous. The same applies for the matched surface
M', which will be projected to F’ as a sample instance in
the random field space. The projections carry both geomet-
ric and topological information in terms of Gaussian cur-
vature and mesh neighborhood from the original space to
the projected random field space. The Gaussian curvature
is projected to the node, and the mesh neighborhood struc-
ture is projected as pairwise distance defined on the random
field. After the projection, the correspondence between the
two surfaces M and M’ can be carried out in the projected
Markov random field space between F' and F”’ correspond-
ing to the mapping A : FF — F”.

The energy function for the correspondence matching is
defined in the next section.

3. Energy Function for Correspondence

After projecting the surface of a mesh model in R3 to a
two dimensional space embedded in Z?, the projected space



is represented as a graph G = (V, E). The set of edges E
describes the adjacency of the mesh nodes V (S in a Gibbs
field). Each node v € V in graph G corresponds to a site s
in the Gibbs field.

Let S be a finite index set of sites. For every site s € .5,
there is a finite space X of states xs. The space of config-
urations x = (z,)ses is the product X = ], g X,. Fora
Gibbs field X, its probability measures II C R associated
with the energy function H(x) of the configuration z and
the partition function Z can be described as the following
form [42],

exp(—H(x))

>, exp(—H(2))
which are strictly positive, and therefore are random fields.

If we assume the Markov property based on pairwise
cliques on a 2D grid, the energy function Hq(z) for the
Gibbs field X can be obtained based on two components.
The first one is based on curvature difference (Gaussian cur-
vature) defined on singletons,

HE(2) = dn (K (s), K'(Au(s))), s € 8, ©)

I(z) = = Z eap(~=H(x)), (6)

where, d,,, is the Minkowski distance defined as L, norm,
dm(x,y) = Ly(x — y); Ay(s) is the current labelling value
of s for the current configuration z; and K, K’ C R",
whose elements are the Gaussian curvatures for random
variables zs and 2, in base random field and sample in-
stance respectively.

The second part of the energy function H(x) incorpo-
rates the spatial restrictions based on the pairwise distance
defined on 2-element cliques,

H () = 37 S (dp(A(s), Aa(3))), 5 € 5,5 € O(s),

s (s,8)
®)
where A(s) is the potential labelling value for site s in do-
main X; (s, §) is the 2-element clique; A, (§) is for § as
defined above; and d, is the pairwise distance defined on
the sample instance graph (S’,Q)’). Pairwise distances de-
fined on the random field and sample instance graph help
preserve the topological information of the shape.
Therefore, the energy function corresponding to the
above potential functions is defined as follows,

He(z) = wpHE(2) + wyHe (x), ©

where wy, and w),, are weights corresponding to the external
and internal energy on the Gibbs field.

Theorem 3.1 Given an energy function Hc(x) defined on
the domain X, the point correspondence matching can be
formulated as the following optimization problem,

argin He(z), (10)

where He () is given as in (9).

Proof The proof follows from the definition of the energy
function H¢(z) as in (9) based on the curvature Minkowski
distance H, é and the spatial pairwise distance H?,, which is
homogenous over the Markov random field. Therefore, the
partition function Z is a constant.

The probability defined on Markov random field can be
measured based on the energy function according to the
Hammersley-Clifford Theorem upon satisfying certain con-
ditions as shown in the next section.

4. Probability Measure and Gibbs-Markov
Equivalence

Assume the random field X is Markovian, then we have,
P(X, = 25| Xg\s = v5\s) = P(Xs = 25| XN, = zn,).

For probability measures II on X, they can be repre-
sented by vectors IT = (TI(z)) e x fulfilling the conditions
I(z) >0and ) II(x) = 1.

Theorem 4.1 (Hammersley, 1968) Let 11 be the distribu-
tion of a Markov random field with respect to a configura-
tion of Gibbs field satisfying the positivity condition. Then

(z) = %e—H(“‘) (11)

Sor some energy function H(x) deriving from a Gibbs po-
tential X associated with the topology of .

According to the Hammersley Clifford Theorem the
probability on Markov random field can be measured with
Gibbs distribution. For strictly positive probability distribu-
tions, the global Markov property is equivalent to the fac-
torization property. For a family X of potentials, the dis-
tribution of a Markov Random Field is a Gibbs distribution
with respect to these potentials [3].

Let X associate with a distribution II as in equation (11),
and the function H¢(x) be derived from a Gibbs potential
Ve, C C S with regard to the neighborhood system [V, then
X is Markovian corresponding to the same neighborhood
system N.

Theorem 4.2 Let K (s) and A(s) denote curvature and la-
belling at site s respectively, the function {H¢c}ocs as in
(9) based on the curvature difference d.,, and pairwise dis-
tance d, forms a Gibbs potential with regard to the neigh-
borhood system N, and the potential function defines a map
He @ X — R U +o00 and forms a Gibbs distribution as in
(6).

Proof The probability distribution 7 defined based on (7)
and (8) satisfies the positivity condition since the marginal
distribution on site s 7,(x,) = 0 = 7(xs, xg\s) = 0 for



all zg\, € X,. Since Hp = 0 for D C C’; and for
z,y € X, if (C) = y(C), then HE(x) = HE(y) and
HP(z) = HZ(y), therefore, Ho = wiHE + wyHY is
a Gibbs potential. According to Theorem 4.1 (6) forms a
Gibbs distribution.

The Gibbs potentials are local in nature. To obtain an
optimal solution to the probability distribution, the search
space X could be very large, and in most cases it is in-
tractable. Gibbs sampler is used in this paper to deal with
the optimization problem.

5. Optimization with Gibbs Sampler

Gibbs sampling is a special case of the Metropolis-
Hastings algorithm [42], and it is applicable when the joint
distribution for a random field is not known explicitly, but
the conditional distribution of each variable is known. The
basic idea is to generate an instance from the distribution of
each variable in turn, conditional on the values of the other
variables. The sequence of the samples comprises a Markov
chain, and the stationary distribution of the Markov chain is
the underlying implicit joint distribution.

A periodic Gibbs sampler is used in our experiments.
During sampling, the sites are updated in a predefined or-
der s1, S, ..., Sk, where {s;}1<i<x is an enumeration of
all the sites of S. The Gibbs distribution II is stationary
for {X;};>0, in the sense that if P(X; = -) = II, then
P(Xj4+1 = -) = II [3]. In particular, II is a station-
ary distribution of the irreducible aperiodic Markov chain
{Xm}m>0, and limy, oo P(X,;, = -) = II. The tran-
sition matrix T of {X,,}im>0 18 T = Hfil Ts(s), where
Ts = {t;y}w,yeX~

The sampling procedure we use for the random field
based Markov chain stochastic processes is similar to the
parameter based ones. For our random field based Gibbs
sampler, the sampling procedure is formulated as follows.
For distribution P(x) = P(zs,s € S) from which we wish
to sample, and given a random initial state of the Markov
chain, the Gibbs sampler sequentially updates the state of
one of the sites by drawing from the distribution of the site
conditioned on the states of the remaining sites of the ran-
dom field.

A sweep is one sequential visit to all sites of the random
field. As the number of sweeps tends to infinity, from the
long run behavior of the random field-valued Markov chain
X, its distribution approaches the Gibbs distribution [37].

The Gibbs sampling algorithm for our experiments is
summarized as follows,

1 Randomly initialize z5 : s € .S,

2 Loopforl=1,..., L,

— traverse space .S,

] Curvature Disturbance ‘ Error Rate |

5% 0.0%
10% 8.0%
50% 28.0%

Table 1. Correspondence Matching Results.

Iteration Number
for Convergence Loops

Noise Level Range of Time

to Converge

5% 3040 20-90 seconds
10% 30-50 20-140 seconds
50% 25-40 4-30 minutes

Table 2. Running Time and Iteration Numbers.

— conditionally sample xgl‘*‘l) -~

— new values for T(pefore(s)) are used straight
away in subsequent sampling steps.

6. Experimental Results

The experiments we have done are to use a triangular
surface mesh from [8] with 448 faces and 226 vertices as
shown in figure 1. The Gaussian curvatures are obtained
by the principal curvatures in the original scale. Each time
we started an experiment with a random initialization of the
configuration. We performed a sequence of tests, and the
matching results are summarized in table 1 with curvature
disturbance levels up to 5%, 10%, and 50%. Figure 2 shows
the Gaussian curvature comparison in different noise levels
for the first 20 sites. The matching results show that within
5% of noise level, the node correspondence is 100% correct;
for noise level up to 10%, 92% of the correspondence are
correct; and for noise level up to 50%, the correct rate is
72%.

Running time and iteration numbers are shown in table
2. For curvature noise levels up to 5% and 10%, running
time is normally around one minute; for noise level of 50%,
it takes several minutes to half an hour to converge. The
iteration number for a typical convergence loop is from 25
to 50.

7. Conclusions

In this paper, we propose a shape representation frame-
work by using Gaussian curvature and Markov random
fields, which can preserve both geometric and topological
information of the underlying shape. The experimental re-
sults for 3D meshed surface matching are quite promising.
Besides matching, the shape representation can also be used
for statistical shape analysis, registration, and 3D model in-



Figure 1. Triangular Mesh

Gaussian Curvature Comparison (noise level: 5, 10, and 50%)
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Figure 2. Curvature Comparison

dexing and retrieval. Future work will investigate the effi-
ciency of the inference procedure.
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