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Abstract

Comparing scene, pattern or object models to structures in images or determining the correspondence between two

point sets are examples of attributed graph matching. In this paper we show how such problems can be posed as one of

inference over hidden Markov random fields. We review some well known inference methods studied over past decades

and show how the Junction Tree framework from Graphical Models leads to algorithms that outperform traditional

relaxation-based ones.
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In memoriam

It was the Summer of 1994, at a NATO work-

shop on Geometry and Vision and Professor
Azriel Rosenfeld was there. He was sitting at the

back of the lecture room vigorously reading the

conference papers, listening to the speaker, updat-

ing his library references and participating in the

discourse of the meeting—to me, that was Azriel.

Endless energy, enthusiasm and always in the cen-
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tre of things. This paper has been written to cele-

brate his life and contributions to Computer

Vision which are as much broad as they are foun-

dational. He uniquely qualifies to be a peer of our
community and this special edition acknowledges

that.

(Terry Caelli)
1. Introduction

The most common data model for relational
structures are graphs, and the general problem of

attributed graph matching has a long history in
ed.
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computer vision, dating back to the work of Tsai

and Fu (1979) and Fu (1983). In this paper, attrib-

uted graphs refer to graphs whose nodes (vertices)

and edges have attributes. For example, for vision

applications, vertices may have unary attributes of
position, orientation, area, while edges may have

binary attributes of lengths and angle differences.

Over the past decade or more there has been a re-

newed interest in algorithms for matching such

structures and approaches vary from graph theo-

retical (Bunke and Shearer, 1998) through to evo-

lutionary biology approaches (Pelillo et al., 1999).

However, recently, the vision and pattern recogni-
tion community has explored two new classes of

solutions. The first is based on deterministic linear

least squares (van Wyk et al., 2002) and graph

eigenspace projections (Shapiro and Brady, 1992;

Caelli and Kosinov, 2004) that fall into the class

of kernel-based variational methods. The second,

of interest in this paper, are those based on prob-

abilistic models, including Probabilistic relaxation
labeling (PRL), which has been used for graph

matching for decades (Kittler and Hancock,

1989; Christmas et al., 1995). The key ideas behind

any of these methods involve the assumption that

‘‘structure’’ is defined probabilistically for ele-

ments and their relations, and the identification

or alignment of structures involves optimizing a

matching likelihood function. In this way, we will
examine how this general approach can be posed

as one of inference over a hidden Markov random

field (HMRF). HMRFs have been used in image

encoding (Cheng and Bouman, 2001), segmenta-

tion (Zhang et al., 2001) and image understanding

(Caelli et al., 2003). However, to this stage they

have not been used for graph matching.
2. The basic HMRF graph model

Assume we have two attributed graphs,

Gs ¼ ðVs,EsÞ and Gx ¼ ðVx,ExÞ, representing a

scene and a template/query, respectively. Vs, Es,

Vx and Ex represent the vector attributes of verti-

ces and edges of the scene and template graphs,
respectively. The scene consists of the template

plus a set of ‘‘background’’ or ‘‘noisy’’ nodes so

that both graphs do not, in general, have the same
numbers of vertices. A single node in the graph Gx

is defined by xi, and in the graph Gs by sa. Each

node in each graph has a unary attribute vector:

ya
s in Gs and yix in Gx (with 1 6 a 6 S and

1 6 i 6 T, where S and T are the number of nodes
in Gs and Gx, respectively). Binary attributes for

each pair of nodes within a single graph are de-

noted by yab
s for Gs and by yijx for Gx.

As we will see, the subgraph isomorphism prob-

lem can be posed as that of assigning to each xi a

unique label, sa—assuming that there is one ‘‘sig-

nal’’ embedded in the ‘‘scene’’. We define a HMRF

over the template graph, Gx, by considering each
node xi in Gx as a random variable (rv) which

can assume any of S possible values, sa, corre-

sponding to the nodes of Gs. The connectivity

structure and the potential functions of the

HMRF are specified in the following.

2.1. The observation component

Each xi corresponds to a discrete site in the

‘‘hidden’’ layer of the HMRF. To each xi we have

the vertex (unary) observed attribute vector: yix
whose values, we will see, are dependent on the

‘‘states’’ (labels) of xi corresponding to the vertices

of Gs. That is, yix is dependent only on its vertex xi,

as

Bi ¼ p yixjxi
� �

¼ C1 yix,y
1
s

� �
, . . . ,C1 yix,y

S
s

� �� �� �t

where each single element is given by Bia ¼
pðyixjxi ¼ saÞ ¼ C1ðyix,ya

s Þ, where ya
s is the unary

attribute associated with the state sa of rv xi. The

unary compatibility function, C1ðyix,ya
s Þ, represents

how likely should be the assignment xi = sa, and is

defined by the multivariate gaussian

C1 yix,y
a
s

� �
¼ N yix; y

a
s ,cov

� �

where cov is the covariance matrix of the complete

set of unary attributes in Gs. The notation

Nðyix; ya
s ,covÞ refers to the value of the Gaussian

function with mean vector ya
s and covariance ma-

trix cov for the particular argument yix.
Consequently the conditional density function,

pðyixjxiÞ, gives rise to a compatibility function

/iðyix,xiÞ that defines, for each possible outcome

of xi, the compatibility between yix and ya
s . Rewrit-

ing, then, we have
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/i y
i
x,xi

� �
¼ C1 yix,y

1
s

� �
, . . . ,C1 yix,y

S
s

� �� �� �t

where subscript i in /i denotes that this vector is

dependent solely on i. In the same way we can
write the single compatibility coefficient /ia as

/ia ¼ C1ðyix,ya
s Þ.

2.2. The Markov component

From the above, each unary evidence node in

the HMRF (yix) is dependent on its hidden node,

xi, defining a distribution (compatibility function)
that associates the single observation vectors yix,
ya
s for each of the possible outcomes, sa, at node

xi. Here we use the binary attributes to construct

the compatibility functions between neighbouring

node states.

Assume that xi and xj are neighbours in the

HMRF (are within the same clique of Gx). Similar

to the unary attributes above, we define

Aji ¼ pðxjjxiÞ ¼

C2 yijx ,y
11
s

� �
� � � C2 yijx ,y

1S
s

� �

..

. . .
. ..

.

C2 yijx ,y
S1
s

� �
� � � C2 yijx ,y

SS
s

� �

0
BB@

1
CCA

where each single element is given by Aji;ba ¼ pðxj ¼
sbjxi ¼ saÞ ¼ C2ðyijx ,yab

s Þ. We can also write A as a

compatibility function, w

wij ¼ wij xi,xj
� �

¼ p xjjxi
� �

where each single element is given by wijab ¼
C2ðyijx ,yab

x Þ and, analogously to C1, C2 is defined

by

C2ðyijx ,yab
s Þ ¼ Nðyijx ; yab

s ,covÞ
where cov corresponds to the covariance matrix of

the whole set of binary attributes of Gs.

So the complete HMRF model is defined by

k = {A,B}, having 2T nodes (pairs), T hidden

nodes and T evidence or observation nodes. Each

hidden node xi (xj) has S possible outcomes (which
correspond to nodes of the graph Gs). For each

pairwise combination of realizations of xi and xj,

there is a scalar p(xj = sbjxi = sa) which measures

the compatibility of this pairwise combination.

For each pairwise combination of yi (yj) and a real-

ization sa (sb) of xi (xj), there is also a scalar
p(yijxi = xa)(p(yjjxj = xb)) measuring the corre-

sponding compatibility.

Given this general HMRF formulation for

graph matching, the optimal solution is that of

deriving a state vector s* = (s1, . . . , sT), where
si 2 Gs for each vertex xi in Gx, such that the

MAP criterion is satisfied, given the model k and

data Y,

s� ¼ arg max
sa;...;sf

pðx1 ¼ sa, . . . ,xT ¼ sfjk,Y Þ ð1Þ
3. Matching algorithms

Since an exact solution to Eq. (1) is NP-hard for

the fully connected MRF model, our approach to
the solution may be either to find an approximated

solution to the complete MRF or an exact solution

to some feasibly sparse MRF. We will now present

and compare a traditional solution to the problem,

which is an example of the first approach, with the

new solution that this paper presents, which is an

instance of the second approach.

3.1. Probabilistic relaxation labeling

Probabilistic relaxation labeling (PRL) is a first-

order recursive updating algorithm that has been

used for graph matching in many areas of com-

puter vision (Kittler and Hancock, 1989). Over

the past decade it has been posed in Bayesian

terms by Christmas et al. (1995) involving updat-
ing the belief (probability distribution for observa-

tion nodes within the HMRF) of a node�s states as
a function of its compatibility with its neighbour-

ing states (the Markov property of the HMRF)

and observations

biðX iðtÞÞ ¼ pðX iðtÞÞ

¼ pðY iðtÞjX iðtÞÞ
Y
j2ri

ejiðX iðtÞÞ ð2Þ

where Y corresponds to the conditional observa-

tion pdf for X at position i. ejiðX iðtÞÞ is the evidence
(message) passed from position j to position i

about each state of the rv X at position i, at time

t, and is given by
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ejiðX iðt þ 1ÞÞ ¼
X
X j

pðY jðtÞjX jðtÞÞ
�

	 pðX jjX iÞejiðX jðtÞÞ
�

ð3Þ

In general, PRL does not require any special

model structure. However, the clique and Markov

properties of the HMRF restrict the updates in

terms of local compatibilities within cliques. The

procedure, itself, is heuristic and only an approxi-

mated MAP solution is obtained after the iterative
process is stopped.
3.2. Single path dynamic programming

In contrast to PRL, single path dynamic pro-

gramming (SPDP) is a simple model approxima-

tion (inexact model) that allows for exact, or

optimal inference. That is, SPDP reduces the
MRF to a single Markov chain defined by a se-

lected path that transverses every vertex precisely

once. With this assumption, the only binary fea-

tures to be taken into account during the optimiza-

tion process will be those between consecutive

nodes in the chain. This is a considerable oversim-

plification, but it has the advantage that we can

use dynamic programming to determine the (glo-
bal) most likely labels for each node corresponding

to the vertices of the matching graph. In PRL we

can use all the binary information amongst pairs

of nodes and still run the algorithm, but we cannot

assure global optimality. Here, we do not use all

the binary attribute information, but we assure

global optimality for the approximated model.

We define the SPDP model as follows. Let
x1, . . . ,xT be an ordered sequence of nodes in Gx

such that each node is visited exactly once. Again,

T is the size of Gx and S is the size of Gs. Let the

evidence potential /(xi = sa) denote the compati-

bility between the observation vector yix and the

observation vector ya
s of the node sa in Gs to which

xi is mapped. The Markovian potential w(xi =
sa,xj = sb) denotes the compatibility of the joint
assignment of xi to sa and xj to sb. The basic idea

now consists in translating these terms into the

well-known dynamic programming scheme for

finding the best ‘‘state sequence’’ s* given the dis-

tribution of the observations (here translated as

being the potentials, /), and the distribution of
Markovian transitions (here seen as the potentials,

w).
To solve this problem we define the recursive d

function as follows. First, we sample a path

through the template graph. Then, for this path
define

diðaÞ ¼ max
x1; x2;...; xi
1

Pðx1,x2, . . . ,xi
1,xi ¼ saÞ

where we index the nodes in the path by variable i

and the nodes to which they map by variable a.
This can be solved by induction,

diþ1ðbÞ ¼ max
a

diðaÞwðxi ¼ sa,xiþ1 ¼ sbÞ
� �

	 /ðxiþ1 ¼ sbÞ

where we must keep track of the maximizing argu-

ments in each step, what we do via a variable n.
The complete algorithm is a Viterbi-like algorithm
(Rabiner, 1989), being different however in that

the transition process is not stationary. The algo-

rithm reads as follows

Initialization

For 1 6 a 6 S,

d1ðaÞ ¼ /ðx1 ¼ saÞ
n1ðaÞ ¼ 0

Recursion

For 26 i6 T , 16 b6 S,

diðbÞ ¼max
a

di
1ðaÞwðxi ¼ sa,xiþ1 ¼ sbÞ
� �

/ðxiþ1 ¼ sbÞ

niðbÞ ¼ argmax
a

di
1ðaÞwðxi ¼ sa,xiþ1 ¼ sbÞ
� �

Termination

p� ¼ max
a

½dT ðaÞ�

s�T ¼ argmax
a

½dT ðaÞ�

Reconstruction

For i ¼ T 
 1,T 
 2, . . . ,1,

s�i ¼ niþ1ðs�iþ1Þ
3.3. The junction tree framework

We now include richer cliques. The Junction

Tree framework (Lauritzen, 1996) comprises a
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set of algorithms that allows exact inference in

arbitrary graphical models. However, the feasibil-

ity of its usage depends exactly on the structure

of these models (specifically on the size of the max-

imal clique of the graph after it is triangulated). A
Junction Tree is a tree where the nodes correspond

to the maximal cliques of the underlying HMRF

and the connectivity is such that the junction tree

property is satisfied. This property states that all

the ‘‘clique nodes’’ in a path from clique node i

to clique node j must contain their intersection.

This holds for triangulated graphs: graphs where

every cycle of length >3 contains at least one chord
(a chord in a cycle is an edge between non-consec-

utive nodes in that cycle; Jordan, in press).

The HUGIN algorithm (Lauritzen, 1996) is one

of the possible techniques for optimal inference

over Junction Trees. Fig. 1 shows the ‘‘tetragram’’

model (JT4) and its respective Junction Tree. Note

that the nodes of the Junction Tree (circles in Fig.

1(b)) correspond precisely to the maximal cliques

of the underlying tree (Fig. 1(a)). The ‘‘trigram’’

model (JT3) is analogous, but the hidden clique

nodes are of size three, instead of four, and the

connections between nodes xi and xi+3 in Fig.

1(a) are not present. Note that the Junction Tree

property is satisfied since every node in the path

between any two given nodes contains the intersec-

tion of these two nodes. Note that there are sepa-

rators between neighbour nodes, which we denote
Y Y Y Y Y Y

X X X X XX1 2 3 4 5 6

1 2 3 4 5 6

X

X

X

X

(a)

Fig. 1. (a) A tetragram model and (b)
with rectangular nodes. These separators include

the set of singleton nodes that are common to both

clique nodes and are introduced in order to apply

the HUGIN algorithm.

The HUGIN algorithm essentially works in two
steps: initialization and message-passing. During

initialization, the potential of each separator is

set to unity and the potential of each clique is

introduced. In our particular case, the hidden cli-

que potentials are products of the pairwise poten-

tials that embodies the 4-size clique. So, the

potential wijkl is actually given by wijkl =

w(xi,xj)w(xi,xk)w(xi,xl). The evidence potentials
/(yi,xi) are simply obtained as shown in the sub-

section 2.1. The second step is the message-passing

scheme which involves a transfer of information

between two nodes V and W. This operation is de-

fined by the following update equations: /�
S ¼

maxV nSfwV g and w�
W ¼ /�

S
/S

wW . These potential up-

date rules must respect the following protocol: a

node V can only send a message to a node W when

it has already received messages from all its other

neighbours. If this protocol is respected and the

equations are applied until all clique nodes have

been updated, the algorithm assures that the

resulting potential in each node and separator is

equal to the maximum probability of the set of en-
closed singleton nodes (Jordan, in press). In our

particular case, we need the maximum probability

for each singleton, what can be obtained by
  Y1 1

2

4

X  X1
X  X3

3 4X  X  X2 4 5X  X  X3

  Y3 3 X  Y4 4 X  Y5 5 X  Y6 6

X  Y2 2

1 X2

3 X4 X5 X6

3

5

X  X2
X  X4

4

6

X  X3
X  X5

(b)

a corresponding Junction Tree.
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observing the final potential of the separators that

contain a single node (see Fig. 1(b)).
4. Experiments and results

We have performed extensive experiments on

two problems: attributed (feature) graph matching

and point set matching. The former consisted of

sets of oriented line segments as shown in Fig. 2,

the latter only using positional information—both

allowing us to objectively control complexity and

noise perturbations of templates and scenes.
In the first problem we compared the perfor-

mances of PRL, SPDP, JT3 and JT4. The underly-

ing MRF for PRL was set as a fully connected

graph (the ‘‘complete’’ model) and the experiments

consisted of matching the straight line segments

(SLSs). The ‘‘template’’ consisted of a series of

SLSs generated according to normal distributions

of length, angle and position. The ‘‘scene’’, or ‘‘sig-
nal plus noise’’ images contained the template and

a set of noisy SLSs also generated from controlled

normal distributions for length, angle and posi-

tion. The unary feature used was the length, and

the binary features used were (i) relative angle,

(ii) relative distance of centroids, (iii) relative max-

imal distance and (iv) relative minimal distance be-

tween extremal points of the SLSs.
The first experiment consisted of studying the

stability of the results while increasingly resetting
x1

x5 x8

x7

x10
x9

x6

x4x3

x2

Fig. 2. Shows images used for comparing matching algorithms. Here

‘‘scene: signal-plus-noise’’ image. Both signal and noise component po

systematically controlled to test the robustness of the matching task. A

(x6, s15), (x7, s16), (x8, s4), (x9, s11) and (x10, s20).
the amount of noisy SLSs, for a fixed amount of

SLSs in the template. For each setting, we took

one thousand runs, and the average performance

for each experiment is presented in Fig. 3(a). The

performance of PRL is severely affected, whereas
those of the proposed models remain fairly robust.

This result agrees with previous results in the liter-

ature, which have shown that PRL is sensitive to

the complexities of more naturally occurring

attributed graph matching problems (Gold and

Rangarajan, 1996).

In the second experiment, we held constant the

amount of SLSs in the template and the scene (10
and 20, respectively), but perturbed each vector

graph contained in the template instance in the

scene. Each extremal point was shifted isotropi-

cally by a random number drawn from a normal

distribution with zero mean and varying standard

deviation corresponding to the x axis in Fig. 3(b).

This simulates noisy situations, what is almost

always the case in inexact attributed graph match-
ing, when the feature extraction process introduces

noise in the measured attributes making the

matching algorithm sensitive to the degree of dis-

tortion. We can observe in Fig. 3(b) that JT4

and JT3 performed better than PRL under noise

augmentation.

A similar procedure was used for the point set

matching experiments, except that we only com-
pared PRL with JT4. In this problem, the only bin-

ary feature in the MRF is the pairwise distance
s3 s4

s16

s20
s11

s15

s7s13

s12

s2
s1

s14

s17

s6 s8 s10

s19

s9

s18
s5

the left image shows a ‘‘signal’’ which is embedded in the right

sitions, orientation and lengths are all normally distributed and

perfect match would be (x1, s1), (x2, s12), (x3, s13), (x4, s7), (x5, s3),
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of JT and PRL when the noise jitter (std) in the domain pattern is increased; T = 10, S = 30.
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between the points (there is no unary feature, so

the observation component is not present). Fig. 4

shows the results for the point set matching prob-

lem. In Fig. 4(a), we evaluated the stability of the

algorithms by increasing the number of points in

the scene pattern. JT4 clearly presents better sta-

bility, resembling the results obtained for the line
segments matching problem. In Fig. 4(b), the sizes

of both patterns are fixed and gaussian noise is

added to the scene pattern. We can also observe

that JT4 has better performance, although we

must expect that for extremely large perturbations

the performances will be similar due to impossibil-

ity of performing significantly better than choice.
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The computational complexity of JT and PRL

are O(TSc) and O(T2S3), respectively, being c the

size of the maximal clique in the model (e.g.,

c = 3 for the trigram model and c = 4 for the tetra-

gram model). As a result, JT3 is less expensive
than PRL, whereas JT is more expensive if

S > T. However, it is worth noting that, whereas

PRL is an iterative procedure and does local opti-

mization, JT is a two-pass algorithm that performs

global optimization.
5. Discussion and conclusion

To this date exact and inexact matching have

not been analyzed in terms of HMRFs, where

the key idea involves posing the matching problem

in terms of deriving the optimal labeling of one

graph�s vertices with respect to the labels of the

matching graph where each vertex is a random

variable in an embedding MRF. Understanding
graph matching in this way allows us to use

powerful exact inference methods from Graphical

Models for attributed graph matching in general.

By exploiting the Markovian properties of simple

triangulated graph structures which have a fixed

maximal clique size, it is possible to perform exact

probabilistic inference in polynomial time. The

proposed technique is much more robust than
standard probabilistic relaxation labelling to vary-

ing point set sizes when under noise. The technique

is also robust with respect to the augmentation of

the noise level, when it clearly outperforms stan-

dard probabilistic relaxation labelling.

These results demonstrate the trade-off between

the exactness of the data model and the optimality

of the algorithm. At one end of the modeling spec-
trum, PRL used an ‘‘exact’’ model (the fully con-

nected graph model) and an inexact inference

algorithm. At the other end, SPDP used an impov-

erished data model (single Hamiltonian path) and

an exact (optimal) inference algorithm. Both these

cases led to inferior performance to the JT algo-

rithms which used an optimal algorithm but with

richer data models. JT4 was richer than JT3 and
this was reflected in performance: JT4 performs

best over all algorithms.
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