
Approximating the problem, not the solution: an
alternative view of point set matching
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Abstract. This work discusses the issue of approximation in point set
matching problems. In general, one may have two classes of approxi-
mations when tackling a matching problem: a representational approx-
imation, which involves a simplified and suboptimal modeling for the
original problem, and algorithmic approximation, which consists in us-
ing suboptimal algorithms to infer the assignment. Matching techniques
in general have relied on the second approach: to keep a complete model
of the original problem and use suboptimal techniques to solve it. In this
paper, we show how a technique based on using exact inference in simple
graphical models, which is an instance of the first class, can significantly
outperform instances of techniques from the second class. We give the-
oretical insights of why this happens, and experimentally compare our
approach with the well-known Shapiro and Brady and Christmas et al.
methods, which are exemplars of the second class. We perform experi-
ments with synthetic and real-world data sets, which reveal a significant
accuracy improvement of the proposed technique both under point po-
sition jitter and size increasing of the point sets. The main conclusion is
that techniques based on optimal algorithms with appropriate subopti-
mal representations may lead to better results than their counterparts
which consist in using optimal representations, but approximate algo-
rithms.

1 Introduction

The point set matching problem consists in finding correspondences between two
point sets, which may be one-to-one or also many-to-one [1, 2], and arises in a
variety of real-world vision tasks such as stereo vision, registration, model-based
object recognition and the like. In any real vision problem we are faced with
inexact point set matching, or matching under structural corruption, which is
known to be an NP-hard problem [3]. As a result, one must rely on approximate
techniques do derive the “best” assignment in some suboptimal sense. Several
approaches for solving matching problems, and in particular the inexact point set
matching problem, have been proposed along the years [4]. Major representatives
are spectral methods [5, 6] and relaxation labeling methods [7, 8]. These families
of techniques consist in encoding all the available information into some complete
representation of the problem and subsequently using approximate algorithms
to derive the assignment. Several limitations have been reported with respect



to spectral methods when structural corruption is present and with respect to
relaxation methods when matching large point sets [1, 6, 9, 10].

This paper shows how a shift in point of view can lead to an alternative
method that overcomes many of the limitations existent in some spectral and
relaxation methods. Essentially, instead of using an optimal representation and
an approximate algorithm, we do the opposite. We model the structure of points
by a sparse representation that deliberately disregards a particular set of rela-
tional information that is actually available. In other words, we approximate the
problem. The reason for that becomes clear in the next step: by taking advan-
tage of this sparsity, we are able to apply an optimal algorithm to derive the
best assignment. As a result, we advocate in favor of approximating the problem
instead of the algorithm for solution.

For performance evaluation, we conducted experiments with synthetic and
real world data sets, where we compared the proposed approach with traditional
versions of spectral and relaxation methods, namely the Shapiro and Brady
spectral method [5] and the Christmas et al. relaxation method [8]. Results
indicate that the accuracy of the results obtained with the proposed technique
significantly exceeds that obtained by the alternative techniques, either under
structural corruption by point position jitter or under augmentation of the point
set sizes.

2 Problem Definition

We consider the problem in, R2, of finding the subset of an S-sized point set
(the codomain pattern) that best matches another point set (the domain pat-
tern) having T points, where T ≤ S. There may or may not exist distortions
due to noise, but if there are, we assume no prior knowledge of the type of noise.
We restrict the matching to be invariant up to isometries, so we do not consider
scaling. The only constraint enforced in the mapping is that it must be a to-
tal function: every point in the domain pattern must map to one point in the
codomain pattern (but the opposite may not hold).

3 The Model

The basic idea of the modeling strategy is to consider an undirected probabilistic
graphical model (a Markov random field) where the nodes are points in the do-
main pattern and their possible realizations are points in the codomain pattern.
In order to fully specify a graphical model, it is necessary to define (i) the poten-
tial functions and (ii) the connectivity of the model [11]. We start by formally
specifying the model and introducing the potential functions.

3.1 Potential functions

The cardinalities of the domain and codomain pattern sets are denoted, respec-
tively, by T and S. Each point di in the domain is associated with a vertex of



a graph Gd, and each point ck in the codomain is associated with a vertex of a
graph Gc. The relative Euclidean distance between a pair {di1 , di2} of points in
the domain pattern is denoted as yd

i1i2
. Analogously for the codomain pattern,

we have that yc
k1k2

is the distance between points ck1 and ck2 . These distances
are seen as edge weights. In this formulation, point pattern matching turns out
to be a weighted graph matching problem.

The model formulation consists, initially, in defining each of the T vertices
in Gd as a random variable that can assume S possible values (discrete states),
corresponding to the vertices in Gc. Note that in this formulation the solution to
the problem (the best match) corresponds to finding the most likely (the best)
realization of the set of random variables.

Figure (1) illustrates a pairwise map and a possible measure which is relevant
in order to construct the potential functions (|yd

i1i2
− yc

k1k2
|).

2

ck2

di 1

ck1

y 1i i2 y k21k

y k21ky 1i i2
d c

d c

di

Fig. 1. An example of a pairwise mapping. An appropriate potential function should
penalize more severely mappings for which |yd

i1i2 − yc
k1k2 | is higher

Since each node in the domain graph can map to S different nodes in the
codomain graph, each pair of nodes can map to S2 different pairs in the codomain
graph. Figure (2) illustrates the kernel structure of our model: a pairwise clique,
where each random variable represents a point in the domain graph which in
turn can assume a set of S possible realizations (which themselves correspond
to points in the codomain graph).

x

Xi Xj
x S

1x

x S

1

Fig. 2. The kernel structure of the graphical model

The sample space for this clique has S2 elements, corresponding to all pos-
sible combinations that a pair of points in the domain graph can map to in
the codomain graph. A potential function is a function that associates to each



element of the sample space a positive real number. In our case, the only require-
ment that the potential function must obey is that its value must be as higher
as more similar are the distances of the mapped edges, as illustrated in Figure
(1).

Formally, we can specify the potential function by

ψij;kl = p(Xi = xk|Xj = xl), (1)

or, in matrix form, for each pair {Xi, Xj} in Gd, we define

ψij = ψij(Xi, Xj) =
1
Z
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c
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 , (2)

where ya
bc denotes the edge weight between vertices with indexes b and c in

graph Ga. Z is a normalization constant that equals the sum of all elements in
the matrix, in order to keep ψij compatible with a probability distribution. S is
a similarity function that measures the compatibility of the two arguments. We
use here the Gaussian function,

S(yd
ij , y

c
kl) = exp

(
− 1

2σ2
|yd

ij − yc
kl|2

)
. (3)

This “proximity measure” is needed in order to model the uncertainty due to
the presence of noise. Obviously, its maximal value must be reached when there
is no noise (yd

ij = yc
kl).

Having specified the potential functions, it remains to be determined the
connectivity of the graphical model: which nodes will be neighbors in the model?

3.2 Connectivity

We have derived elsewhere [2, 4] a particular connectivity of the graphical model
(a sparse graph) which has a very unique property: it is provably optimal in
the particular case of exact matching. By optimal we mean the fact that the
optimization problems over this particular sparse graph and over the fully con-
nected graph are one and the same. This is important, because the optimization
problem in the sparse graph can be solved in polynomial time, whereas the one
over the complete model is NP-complete [4]. This equivalence holds strictly only
for exact matching, and it is still an open issue to determine theoretically how
close to optimal is the solution for inexact matching problems. Nevertheless,
there is experimental evidence that for small to moderate noise the results are
impressively good [4].

Here we use this particular subgraph as the connectivity pattern for the
Markov random field under consideration. The graph topology is depicted in
Figure (3).

The resulting graph is technically a 3-tree [12], which is a graph that arises
by adding new nodes that are connected to precisely 3 existent nodes (these 3
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Fig. 3. A 3-tree graphical model. Each of the T nodes is a random variable represent-
ing a point in the domain graph. Each variable can assume S possible realizations,
corresponding to points in the codomain graph

nodes must form a clique, i.e. every pair must be connected). In the example in
Figure (3), X1, X2 and X3 are the 3 “reference” nodes to which the additional
T − 3 nodes are connected.

Given the graph connectivity and the pairwise potential functions, the model
is defined. The last step then consists in inferring what is the most likely joint
realization of all the random variables for the given connectivity and set of
potentials of the model. This is precisely the MAP inference problem in this
model, whose solution represents the best assignment in the point set matching
task and is described in what follows.

3.3 MAP Computation

The Junction Tree framework provides a set of deterministic algorithms for exact
inference in arbitrary graphical models [11, 13]. Here we use an algorithm from
this framework in order to find the optimal MAP estimate for the model in
Figure (3). A Junction Tree of a graph is another graph where (i) the nodes
correspond to the maximal cliques of the former graph (a maximal clique is
a clique which is not a proper subset of another clique) and (ii) the running
intersection property is satisfied. This property states that all the nodes in the
path between any two nodes in the Junction Tree must contain the intersection
of these two nodes. It is known that the condition for the existence of a Junction
Tree is that the graph must be chordal, or triangulated [13]. A chordal graph is
a graph with no chordless cycles1. The 3-tree is a chordal graph, and this allows
us to use the Junction Tree framework to calculate the MAP estimate of the
random variables in the model.

Figure (4) shows a Junction Tree obtained from the model in Figure (3).
The nodes of the Junction Tree are denoted by circles in which are listed the
nodes of the original graph that correspond to the respective maximal cliques.
The rectangles are the so-called separators, that contain the intersection of the
nodes to which they are linked. Both the nodes and the separators are endowed
with “clique potentials”, and the optimization process consists in updating these
potentials, as explained below.

1 A chord in a cycle is an edge between two non-consecutive nodes in the cycle.
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Fig. 4. The Junction Tree obtained from the model in Figure (3)

In this paper we applied the Hugin algorithm [13], an instance of the Junc-
tion Tree framework, to accomplish exact inference in the 3-tree model shown in
Figure (3). The complexity of Junction Tree using Hugin in our 3-tree model is
O(S4T ). As a result, the complexity on S and T is polynomial. The Hugin algo-
rithm essentially works in two steps: initialization and message-passing. During
the initialization, the clique potential of each separator (Φ) is set to unity and the
clique potential of each node (Ψ) is introduced (see subsection 3.1). These last
clique potentials are assembled as an element-by-element product of the pairwise
potentials (see Eq. 2) in the respective clique. For example, for the 3-tree model,
Ψ(xi, xj , xk, xl) = ψ(xi, xj)ψ(xi, xk)ψ(xi, xl).

The second step is the message-passing scheme, which involves a transfer of
information between two nodes V and W in a systematic way until every pair of
nodes in the Junction Tree has participated in the process [11]. This operation
is defined by the following equations:

Φ∗S = max
V \S

ΨV Ψ∗
W =

Φ∗S
ΦS

ΨW

where we used standard notation for the current and updated (∗) versions of the
separator potentials (Φ) and the clique potentials (Ψ). The first equation is a
maximization over all sub-configurations in ΨV that do not involve the singleton
nodes which are common to ΦS and ΨV . The second is simply a normalization
step necessary to keep ΨW consistent with the updated version of ΦS (division
and multiplication are performed element-by-element). The above potential up-
date rules must respect the following protocol: a node V can only send a message
to a node W when it has already received messages from all its other neighbors.
If this protocol is respected and the equations are applied until all clique nodes
have been updated, the algorithm assures that the resulting potential in each
node and separator of the Junction Tree is proportional to the (global) maximum
a posteriori probability distribution of the set of enclosed singleton nodes [11].
The constant of proportionality is guaranteed to be the same for every node,
what implies that the mode of the local potentials will correspond to the MAP
estimate. In our particular case, we need the maximum probability for each sin-
gleton, what can be obtained by maximizing out the remaining 3 singletons in



each of the nodes. The indexes for which the final potentials are maximum are
considered the vertices in Gc to which the corresponding vertices in Gd must be
assigned.

4 Experiments and Results

We have carried out two sets of experiments, one with synthetic point sets and
another with real-world data. In both of them, we compare our technique (de-
noted simply as JT) with the probabilistic relaxation labeling version described
in [8], denoted as PRL, as well as with the spectral method of Shapiro and
Brady [5], denoted as SB. These two methods encode all the pairwise distances
in their model representation, whereas our method only encodes those distances
that correspond to the 3-tree topology. On the other hand, our approach uses
a non-iterative algorithm which is optimal, whereas the other two are based on
approximate and heuristic algorithms. Results show how these different approx-
imation principles affect accuracy in point set matching.

4.1 Synthetic data

In the experiments with synthetic data, we generated random points according
to a bivariate uniform distribution in the interval x = [0, 1], y = [0, 1]. We carried
out two experiments: one with graphs of equal sizes and another with graphs
with different sizes (the SB method is not suited for different graph sizes). In
the first experiment, with equal sized graphs, we used graphs of sizes (10,10),
(20,20) and (30,30) nodes. Then, for each of these 3 instances, we perturbed the
codomain pattern with progressive levels of noise in the position of the nodes
(white Gaussian noise with varying standard deviation). This setting allows us
to have an idea of the relative performances both under the augmentation of the
graph sizes and under progressive structural corruption of the patterns. Figure
(5)-left shows the obtained curves under these experimental conditions. Each
point in a curve is the average over 100 trials.

The graphs show that differential noise increasing has a very different impact
on SB when compared to JT and PRL. JT and PRL performances are much less
affected than that of SB for a same amount of incremental noise. Also, it is
possible to note that scaling up the sizes of the graphs, for small levels of noise
(std = 0 − 1), practically does not affect the performance of JT, whereas the
performances of PRL and SB are significantly affected. This may suggest that
the proposed technique may be a serious alternative to these other approaches
in circumstances where the noise involved is not high. For larger, but still mod-
erate amount of noise (std = 1− 4), the proposed technique still dominates the
others. It is clear however that PRL has similar or possibly superior performance
for extremely high levels of noise. This is probably due to the fact that under
severe noise the 3-tree approximation becomes poor. However, note that severe
stochastic perturbation is not a common issue in point set matching problems.
Usually, in real applications like stereo matching, shape matching or registration,
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Fig. 5. Left: performances of JT, PRL and SB when the noise (position jitter) increases,
for various sizes of the graphs (T = S in this experiment). Right: Performances of JT
and PRL when the noise (position jitter) increases, for fixed size of the domain graph
(T ) and various sizes of the codomain graph (T + N = S)

the point sets differ essentially by some isometric, affine or projective transfor-
mation (possibly together with a non-linear deformation), but the stochastic
perturbation in the position of the points is itself small or at most moderate [4].

In the second experiment with synthetic point sets, we kept constant the size
of the domain point set (10 nodes) and varied the size of the codomain point
set (from 10 to 25 nodes in steps of 5). The introduction of noise by position
jitter was analogous to the equal-size graphs experiment described above. In
this experiment, we only compared JT with PRL, since SB is not suited for
graphs with different sizes. Figure (5)-right shows the graphs corresponding to
this experiment. Each point in a curve corresponds to the average over 100 trials.
In this experiment, it is clear that PRL does not perform well when the sizes
of the point sets are significantly different. It is also possible to notice the fact
that for larger graphs the proposed technique has a very superior performance
for small levels of noise.

4.2 Real-world data

In the real-world experiments, we performed comparisons of the algorithms using
the CMU house sequence, as done in [1]. Figure (6) shows the images used in
the experiments.

In total, 29 landmark points were manually marked in each of the images.
Then we run the three algorithms (JT, PRL and SB) in several pairs of them, in a
systematic way, described as follows. First we matched pairs that are consecutive
in Figure (6) (1-11, 11-21, 21-31, 31-41, 41-51). Then we matched pairs separated
by a single image (1-21, 11-31, 21-41, 31-51), by two images (1-31, 11-41, 21-51),
by three images (1-41, 11-51) and finally by four images (1-51). For each of



Fig. 6. Images from the CMU house data set (from left to right and top to bottom:
images 1, 11, 21, 31, 41 and 51)

Table 1. Matching results (correct correspondences out of 29)

Image pair 1 - 11 11 - 21 21 - 31 31 - 41 41 - 51 1 - 21 11 - 31 21 - 41 31 - 51

JT 29 29 29 29 29 28 28 29 29
PRL 29 29 29 29 29 28 28 28 28
SB 19 16 18 23 23 17 16 15 14

Image pair 1 - 31 11 - 41 21 - 51 1 - 41 11 - 51 1 - 51

JT 28 28 29 27 25 25
PRL 28 26 27 26 26 25
SB 21 14 14 11 13 7

the experiments, the amount of correct correspondences for each technique was
recorded and is shown in Table 1.

5 Discussion

A general understanding of the results is possible if we pay attention to a few key
observations. PRL is an heuristic iterative optimization procedure that for prob-
lems with big search spaces may not converge in a feasible amount of iterations
(even when it does, it reaches only a local optimum). In fact, in all experiments
we have used 200 iterations for PRL, what is already considered to be a very
large number compared to its use in many applications [8]. The SB method is
non-iterative and also effective in the noiseless case, but it is clear from the exper-
iments that the eigen-structure of the point proximity matrix does not provide
robust features for matching under (even very small) noise. On the other hand,
the proposed technique is non-iterative and always finds the optimal solution for
a model that itself is optimal in the limit of zero noise. Thus it is reasonable to



expect that for small levels of noise the solution will be “close” to the optimal
solution (although the precise meaning of “close” is not yet clear, as already
mentioned), what is strongly suggested by the virtually perfect performance in
the range std = [0, 1]. Current efforts are being dedicated to obtain theoretical
results on how the 3-tree approximation deteriorates as noise increases.

6 Conclusion

In this work, we have investigated how different sources of approximation affects
the performance of point set matching methods. Usual approaches to point set
matching, such as spectral and relaxation-based methods, encode all the avail-
able information in the model representation, but rely on approximate algorithms
for deriving the assignment. Our method, in contrast, consists in approximating
the problem itself such that the resulting representation is suitable for the use
of optimal algorithms for finding the match. Our method consists in modeling
the relational features of a point set in a Markov random field framework where
the underlying graph structure is sparse and allows for optimal MAP computa-
tion in polynomial time. Experiments were performed both with synthetic and
real-world data sets, which indicate that the proposed “approximate model -
optimal algorithm” approach is a serious alternative to other “optimal model -
approximate algorithm” approaches.
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