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Abstract

We have developed a polynomial time optimal method
for a class of attributed graph matching problems using the
Junction Tree algorithm from Graphical Models. In this pa-
per we compare this method with standard probabilistic re-
laxation labeling using different forms of point metrics and
under different levels of additive noise. Results show that,
no matter which of the metrics is applied, our technique
is more effective than probabilistic relaxation labeling for
large graph sizes. For small graph sizes, our technique is
still preferable for two of the metrics, while for the third
one both techniques perform similarly.

1. Introduction

The abstract and general nature of the attributed graph
matching problem makes it a powerful tool for modeling a
variety of pattern matching tasks where complex structures
are involved. A particular and important application domain
is point pattern matching. It occurs in several domain in-
stances, most noticeably in stereo matching [7]. In point
matching, the edge attributes are considered to be functions
of the Euclidean distance between the points [2], while ver-
tex attributes are typically ignored when some type of in-
variant matching is required.

In a very recent study, we have explored a hidden
Markov Random Field formulation and the Junction Tree
algorithm to find a global optimum for the point match-
ing problem in polynomial time [1]. In that work, we mod-
eled the edge attributes as a Gaussian function of the rel-
ative Euclidean distances between the points and used tri-
angulated distances between the vertex sets. This model
proved to be quite robust to noise and had a perfect ac-
curacy which was insensitive to the size of the involved
graphs when in the absence of noise.

The contribution of the present paper is to apply to this
technique some additional types of proximity measures be-
tween the points (as well as the Gaussian itself), and to com-
pare the performance of this model to the well-known tech-
nique of probabilistic relaxation labeling [3]. Results ob-
tained clearly showed that, for large graphs, our technique
outperforms probabilistic relaxation labeling for all the al-
ternative proximity measures explored. For small graphs,
our technique still performs better when two of the three
proximity measures are used. The two methods perform
similarly for small graphs using the third measure.

2. The Problem

‘We consider the problem of matching two point patterns
in R? invariant to translations, rotations and reflections. In
this work, the scale of both point patterns must be the same.
This is the problem of isometry-invariant point matching,
or matching under transformations that preserve length [1].

The only information that is available is the position of
each point with respect to some reference frame. For clar-
ity, we call the pattern which consists in the domain of the
mapping as “domain pattern” and the other as “‘codomain
pattern”. There are several ways of formally defining this
problem, depending on the type of constraints enforced in
the mapping. In this paper, the only constraint enforced is
that the function (mapping) must be “total”: every element
in the domain pattern must map to some element in the
codomain pattern (but the opposite may not be true), since
we have shown in [1] that, using this constraint, it is pos-
sible to achieve optimal matching in polynomial time with
our method.

3. Review of Optimal Point Matching

In this section we provide a brief overview of the opti-
mal point matching approach presented in [1].



The points in the domain and in the codomain are asso-
ciated to nodes of graphs GG; and Gy, respectively. The rel-
ative distance between a pair {i,j} of points in a pattern
is seen as an edge attribute of the edge that connects ver-
tices 7 and j in G or G. In this formulation, point pattern
matching turns out to be an attributed graph matching prob-
lem.

It is possible to show that encoding only those distances
corresponding to the edges of a triangulated (formally a “3-
tree”) mesh over a point set is sufficient to uniquely encode
the complete distance matrix. This property, in conjunction
with the known optimality of the Junction Tree algorithm
for inference in triangulated graphical models, allowed us
to create this new optimal matching algorithm that runs in
polynomial time [1].

The model formulation consists, initially, in defining
each of the T vertices in (G; as a random variable (rv) that
can assume S possible values, corresponding to the vertices
in Gs. In this way, we can define the compatibility of a joint
match of two rv’s z; and z; in G to values 0y, and 6; in G,
as

Vijikl = P(z; = 9k|$j =0,

or, in matrix form, for each pair {4, j} in G}, we obtain a
proximity matrix,
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where ¢ denotes the binary attribute between vertices b
and c in graph G, (which is the distance from the corre-
sponding points in the point pattern). The key point, how-
ever, is that the edge connections in the model are drawn
as a 3-tree, and not between every pair of nodes. This re-
tains the entire information and, at the same time, gener-
ates a simple model graph whose maximal clique size is 4,
what has implications for the time complexity of the match-
ing algorithm, as we will see. C' is a normalization constant
that equals the sum of all elements in the matrix, in order
to keep v;; compatible with a probability distribution. The
operator P is a proximity function that measures the sim-
ilarity of the two arguments. Several options are available
for P [2], and in [1] we have explored the univariate Gaus-
sian function:
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The resulting model is shown in Figure 1. Optimal
matching is then obtained by running an exact inference en-
gine in this graphical model. We have used the HUGIN
algorithm [6], an instance of the Junction Tree (JT) frame-
work [5]. This algorithm enables optimal inference

over triangulated graphs and propagates optimal evi-
dence for node states (in our case, vertex labels of one
graph in the other as a function of the compatibilities be-
tween vertices and edges). Evidence is propagated via
marginalization defined over separator nodes that de-
fine relations between cliques. The complexity of the
resulting optimal algorithm turns out to be exponen-
tial on the size of the maximal clique of the model. In
our case, it is O(S*T), thus polynomial in the size of
both graphs. Key to the model’s efficiency is the us-
ing of lower-order cliques instead of the complete distance
matrix, as is the case in techniques like probabilistic relax-
ation labeling.

Figure 1. A possible 3-tree model.

4. Alternative Proximity Functions

In arecent work, Carcassoni and Hancock presented sev-
eral types of point proximity functions for point matching
[2]. Here we consider some similar alternative choices in
our evaluation of the robustness of our approach to differ-
ent types of proximity functions. We use a notation similar
to that of [2].

A possible choice for a proximity function is based on
the Hyperbolic Tangent function, and can be written as
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The second alternative is an Increasing Weighting func-
tion, which is simply
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Each of these types of point proximity functions were ap-
plied, as well as the Gaussian one, in both our technique and
probabilistic relaxation labeling.

5. Experiments and Results

‘We have compared our algorithm with Probabilistic Re-
laxation Labeling (PRL) [3] in two sets of experiments.



In both sets of experiments, we generated codomain pat-
terns with .S points at random positions (but not coincident)
in images of size 256x256. Then, we extracted randomly a
subset of T" of these points to build the template pattern. In
all the experiments, the number of iterations for PRL was
set as 200, since empirical evaluation has shown that con-
vergence always occurs below this value.

In the first set of experiments, we assume that there is a
small amount of noise in the domain pattern. The noise con-
sists in adding independent random numbers drawn from a
normal distribution with zero mean and varying standard
deviation (std) to both the = and y coordinates of each point
in the domain pattern. The value of std was set in 2 pixels.
We then vary the size of the codomain pattern for a fixed
size of the domain pattern. A set of 8 increasingly com-
plex matching tasks were carried out, where graphs of size
(T,S) = (10,15), (10,20), (10,25), (10,30), (10,35), (10,40),
(10,45) and (10,50) were matched using both our method
(which we denote by JT) and PRL. For each of these match-
ing tasks, we performed 1000 runs and recorded the aver-
age result. This entire procedure was repeated for each type
of point proximity function: Gaussian (G), Hyperbolic Tan-
gent (H) and Increasing Weighting (I). The obtained perfor-
mances are shown in Figure 2, where (a) . .. (d) correspond
to results for different values of the parameter ¢ in each
type of proximity function. o is such that the maximal pos-
sible value for ||;” —y*!|| is normalized to K, whose values
are in the top of the images in Figures 2 and 3. This normal-
ization prevents underflow.

In the second set of experiments, the sizes of both point
patterns are kept constant. We used T = 10 and S = 20. The
reason for using small values is to present a fair compari-
son: as we will see, the performance of PRL is only com-
parable to our method for small sizes of point patterns. For
patterns with too many points, our method is by far more ef-
fective. We vary, in this set of experiments, the noise in the
domain pattern. The standard deviation was progressively
setto {1,2,3,4,5,6,7,8,9,10} pixels. Again, all this pro-
cedure was repeated for each type of point proximity matrix
and, similarly to the previous experiment, for the same val-
ues of K. The final performance is presented in Figure 3.

6. Discussion

Figure 2 shows that, for a fixed noise level, the perfor-
mance of JT is weakly sensitive to the complexity of the
matching task. As S grows, JT outperforms PRL in all prox-
imity functions. This is a very important result, since in
many applications the size of the underlying graphs is large.
As we mentioned earlier, PRL shows good performance for
small graph sizes. However, as the graph gets larger, its per-
formance is noticeably damaged, no matter which value of
K is assumed. This fact restricts the usability of PRL for

small matching problems, as has already been argued [4]. It
is worth mentioning the fairly good performances of PRL-I
for high K and of PRL-H for low K, what encourages the
use of these alternative proximity functions instead of the
Gaussian one when using PRL.

In Figure 3, one notice that the performance of the JT
method under varying noise conditions is fairly insensi-
tive to the value of K, being JT-G and JT-H equally effec-
tive, and JT-I poorer. The performance of PRL, on the other
hand, shows to be sensitive to K, where the most startling
behavior is due to PRL-H for low values of K, when PRL-H
and JT-H (or JT-G) perform similarly. In this case, the ad-
vantage of using the Hyperbolic function for PRL, instead
of the Gaussian, is really significant.

In general, we observe that the main advantage of our
method lies in its use for matching large graphs. In addi-
tion, the performance of the Gaussian and the Hyperbolic
proximity functions are comparable in our method.

7. Conclusion

This work has presented an analysis of the robustness
of point matching in a previously proposed technique un-
der different types of point proximity functions. By accom-
plishing a set of controlled experiments, we showed that the
performance of our technique exceeds significantly that of
probabilistic relaxation labeling for matching problems in-
volving large graphs, irrespectively of the type of proximity
function. For simpler problems with small graphs, our tech-
nique still performs better for two types of proximity func-
tions, while for the third type the two methods are compa-
rable in performance.
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Figure 3. Robustness with respect to the
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