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Abstract

This paper explores a formulation for attributed graph
matching as an inference problem over a hidden Markov
Random Field. We approximate the fully connected model
with simpler models in which optimal inference is feasible,
and contrast them to the well-known probabilistic relax-
ation method, which can operate over the complete model
but does not assure global optimality. The approach is well
suited for applications in which there is redundancy in the
binary attributes of the graph, such as in the matching of
straight line segments. Results demonstrate that, in this ap-
plication, the proposed models have superior robustness
over probabilistic relaxation under additive noise condi-
tions.

1. Introduction

The general problem of Attributed Graph Match-
ing (AGM) has a long history, dating back to the pioneering
work of Fu [3] on Attributed Relational Graphs (ARGs). In-
exact graph matching and multi-subgraph matching have
been extensively studied by Bunke [1] and coworkers by ex-
tending methods to include distance measures such as edit
distance. Recently, the vision and pattern recognition com-
munity has explored two new classes of solutions. The first
is based on deterministic linear least squares [14] and graph
eigenspectra [12, 7]. The second, of interest in this pa-
per, are those based on probabilistic optimization models,
including well-known Probabilistic Relaxation Label-
ing (PRL), which has been used for graph matching over
the past decade [10, 2]. In particular, Hancock and as-
sociates [5] have made significant contributions to a

probabilistic framework for graph matching using ver-
sions of Probabilistic Relaxation.

This work aims at further formalizing the probabilistic
optimization approach to graph matching under the theory
of Probabilistic Graphical Models [8], providing a formal
alternative to PRL, which is, essentially, a heuristic method
[2]. In this new theoretical context, we propose models for
attributed graph matching in terms of an underlying hidden
Markov Random Field (HMRF) image feature graph model.
The basic idea behind our proposal is that in most real AGM
applications there is a significant correlation of binary infor-
mation between different pairs of nodes, and conditional in-
dependence assumptions may be postulated in order to sim-
plify the original fully connected ARG while still retaining
good performance. This naturally gives rise to a Markov
Random Field formulation, where only “local” interactions
are used.

This simplification enables us to use models in which ex-
act probabilistic inference is feasible, in contrast to most
techniques for AGM, which present approximate solutions
to the original problem involving fully connected graphs.
Specifically, we introduce two sets of HMRF models for
solving the AGM problem. The first, Single Path Dynamic
Programming (SPDP), consists in approximating the fully
connected graph with a single chain which traverses each
vertex exactly once. This model allows us to use Dynamic
Programming in order to find the optimal match between
the graphs. In the second type of model, we improve over
this simple chain model by proposing HMRFs with maxi-
mal cliques of size 3 and 4, what retains the feasibility of
the model and enables optimal inference via Junction Tree
methods [8].

The paper is organized as follows. In section 2, our for-
mulation of AGM as a probabilistic optimization problem
defined over a HMREF is presented. Section 3 describes the
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specific problem domain in which the proposed models will
be applied. In section 4, we propose HMRF models for
AGM. Section 5 is dedicated to comparing PRL to the mod-
els proposed in a set of controlled experiments. In section 6
we present results and discussion and, finally, in section 7
we draw conclusions.

2. Graph Matching Models as HMRF's

In this section we formulate AGM as an optimization
problem defined over a HMRF. The two different kinds
of proposed models will then be variations where specific
structure (connectivity) and algorithms are adopted in this
HMREF representation.

Assume we have two ARGs, G and G, representing
the scene and the template/query, respectively. The scene
consists of the template plus a set of “background” or
“noisy” nodes. We define a HMRF on the template graph
G . A single node in the graph G, is defined by z;, and in
the graph G, s,. Each node in each graph has a unary at-
tribute vector: y; in G, and y in G4, where 1 <4 < T and
1 < a < S5, being S and T' the number of nodes in G and
G, respectively. Binary attributes for each pair of nodes
within a single graph are denoted by 4% and y%, represent-
ing the relational attribute vectors between vertices «, 3 in
G5 and between vertices i, j in G,.

The subgraph isomorphism problem involves assigning
to each x; a unique s, - assuming that there is one ‘“sig-
nal” embedded in the “scene”. In this paper we formulate
this in terms of optimal inference over HMRFs, as follows.
We consider each node z; in G, as a discrete random vari-
able (r.v.) which can assume any of S possible values, sq,
corresponding to the nodes of G.

2.1. Observation Component

Each z; corresponds to a discrete site in the “hidden”
layer of the HMRF. To each x; we have the vertex (unary)
observed attribute vector, yfﬁ whose values, we will see, are
dependent on the “states” of x; corresponding to the ver-
tices of G,. That is, y¢ is dependent only on its vertex z;,
as:

B = p(yglzi) = (S, va), - Sy
where each single element is given by
Bia = p(y;h;l = 8a) = S(yfm vs)

and where y¢' is the unary attribute associated to the dis-
crete value s,, of .v. ;. The function S is a similarity func-
tion: it is zero for totally incompatible features and 1 for
totally compatible features. Here we have used a multivari-
ate Gaussian for this purpose and the similarity functions

are given by
S(a,b) = Ny (b, cov)

where cov is a diagonal covariance matrix (assuming at-
tribute independence) such that each eigenvalue is the sam-
ple variance of the complete set of unary attributes in G.
This merely weights the different attributes so that they can
be gathered into a single representational measure.

Consequently the conditional density function, p(y%|z;),
is a compatibility function ¢;(y%, ;) that defines, for each
possible outcome of z;, the compatibility between y and
y<. That is:

¢i(yL, ;) = B;
where subscript 7 in ¢; denotes that this vector is dependent

solely on ¢. In the same way we write the single compatibil-
ity coefficient ¢;,, as

Gia = S(yivy?)
2.2. Markov Component

Accordingly, each unary evidence node in the HMRF
(y;) is dependent on its hidden node x;, defining a distribu-
tion (compatibility function) that associates the single ob-
servation vectors yZ, y& for each of the possible values s,
at node x;. Here we use the binary attributes to construct
the compatibility functions between states of neighboring
nodes.

Assume that x; and x; are neighbors in the HMRF
(being connected in G,;). Similarly to the unary attributes
above, we define:

Sy vt Sy, ys®)
Aji = p(xjlz;) = -
S(yij Sl) . S(y” SS)

xr rJds xr1Jds

where each single element is given by
Ajispa = p(zj = sp|z; = sa) = Sy, ye?).
We can also write A as a compatibility function, :
Vij(zs,25) = Ajs
where each single element is given by
bijas = S y5”)
and S is defined by
S(a,b) = Ny (b, cov)

where cov is a diagonal covariance matrix (again, assuming
attribute independence) with eigenvalues equal to the sam-
ple variance of the complete set of binary attributes of G.
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Figure 1. An instance of the HMRF model. Ob-
servation conditions (vertical lines) are de-
fined by the dependencies of observations
(node attributes) on node states (labels) and
the Markov condition (horizontal line) is de-
fined by the interdependencies of node la-
bels corresponding to the nodes of the scene
graph. Each hidden node z; can assume S
different states.

The complete HMRF model is defined by

A={A,B}

having 2T nodes, being T hidden nodes and T evidence or
observation nodes.

Figure 1 shows a graphical representation of the model
and parameters. Each hidden node z; (z;) has S possible
outcomes (which correspond to nodes of the graph G ). For
each pairwise combination of realizations of x; and x; there
is a scalar p(z; = sg|z; = so) which measures the com-
patibility of this pairwise combination. For each pairwise
combination of y; and a realization s, of x;, there is also a
scalar p(y;|z; = x,) measuring the corresponding compat-
ibilities.

Given this general HMRF formulation for graph match-
ing, the optimal solution reduces to that of deriving a state
vector s* = (st,---,sT), where s° € G, for each ver-
tex x; in G, such that the MAP criterion is satisfied, given
the model and data,

s* =arg max p(r1 = Sq, -

Saustt 5S¢

,CL’T:SC‘)\7Y) (1)

where Y denotes the whole set of attributes in both graphs.

3. The Problem Domain

In order to access quantitatively the performance of the
proposed models, we have prepared a simulated controlled
environment. We have defined a set of vector-graph [14,
9] patterns consisting of spatial distributions of oriented
straight line segments (SLSs). In this case the position, ori-
entation and length distributions of these lines are defined
by normally distributed r.v.’s and they can also be embed-
ded in other sets of lines (“background”), whose parame-
ter values are also normally distributed as shown in Figure
2. The purpose then is to find a mapping from the “signal”
vector-graph to the “signal-plus-noise” vector graph.

-
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Figure 2. Shows the type of images used for
comparing matching algorithms. Here the left
image shows a vector-graph “signal” which
is embedded in the right “scene: signal-plus-
noise” image. Both signal and noise com-
ponent positions, orientation and lengths
are all normally distributed and systemati-
cally controlled to test the robustness of the
matching task. A perfect match would be
(71,51)s (225512), (735513), (T4,57), (75,53), (265515),
(z7,516)s (T8554) (T95511) @Nd (210,520)-

Note that there is a natural “redundancy” in the set of bi-
nary attributes in this type of problem domain in 2D. For ex-
ample, consider a very natural choice for a binary feature:
the relative angle of two SLSs. In this case, if we know the
feature for pairs (A,B) and (B,C), then the feature for pair
(A,C) is uniquely determined, and we do not need to in-
clude it explicitly during the optimization procedure. In an-
other example, assume the binary feature “relative distance
of centroids”. If we know this feature for each pair of nodes
(A,B,C,D) and for each pair of nodes (B,C,D,E), then the
feature between (A,E) is uniquely determined.

The existence of this kind of redundancy in binary at-
tributes suggest that several edges in the underlying ARG
may actually be conveying no new information whatsoever.
In other words, given that we know a subset of binary rela-
tions, there are other subsets of binary relations that add no
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new information about the structure. It is exactly this obser-
vation that motivated us to propose the models which ap-
pear in the following section.

4. Proposed Models

Since a complete solution to Equation (1) is N-P hard,
various approximations to the solution have been devel-
oped. In this section we present our approach, which con-
sists in approximating the problem instead of the solution,
by identifying approximate models for the original ARG
and finding the exact solution for these models. We intro-
duce two types of models that simplify the fully connected
ARG within a Markov structure. Along with each model we
also present algorithms that assure a global optimum for the
probabilistic optimization procedure.

4.1. Single Path Dynamic Programming

Single Path Dynamic Programming (SPDP) is a simple
model approximation in so far as we assume that the HMRF
reduces to a single Markov chain defined by a selected path
that transverses each vertex precisely once. With this as-
sumption, the only binary features to be taken into account
during the optimization process will be those between con-
secutive nodes in the chain. This is a considerable oversim-
plification, but it has the advantage that we can use Dynamic
Programming to determine the most likely labels for each
node corresponding to the vertices of the matching graph. In
particular, we find it appropriate to start with a brief descrip-
tion of Probabilistic Relaxation Labeling and then point the
key differences from SPDP. Standard PRL equations are as
follows [2]:

bi(Xi(1)) = p(Xu(1)) = p(Ya()|1Xu(1)) T el (Xa(1))

Jjeoi
_ 2
where e] (X;) is the evidence (message) passed from posi-
tion j to position ¢ about each state of the r.v. X at position
1 - at time ¢, as given below:

(Xt +1)) = 3 [PV (010D X0)el (X ()]

X

(3)
where Y corresponds to the conditional observation pdf for
X at position 7. Note that in PRL the neighborhood for each
node can be the entire set of remaining nodes, thus we can
use all the binary information available from the feature ex-
traction process. However, PRL is known to converge only
to a local optimum [2]. The model that we present here,
SPDP, contrasts with PRL in that we do not use all the in-
formation of binary attributes, but we assure global optimal-
ity for the approximated model.

We can define the model as follows. Let x1, ..,z be
an ordered sequence of nodes in G, such that each node
is visited exactly once. The definitions of Section 2 hold
here, thus 7" and S correspond to the number of vertices in
G, and G, respectively. Also lets recall the notation for
the clique potentials. The evidence potential ¢(z; = s4)
- where we dropped the dependency on ¥ due to the fact
that it is a constant - denotes the compatibility between the
observation vector y, and the observation vector y< of the
node s, in G4 to which z; is mapped. The Markovian po-
tential ¢)(z; = so,x; = sg) denotes the compatibility of
the joint assignment of x; to s, and x; to sg. The basic
idea now consists in translating these terms into the well-
known Dynamic Programming scheme for finding the best
“state sequence”, s*, given the distribution of observations
(here translated as being the unary potentials, ¢) and the dis-
tribution of Markovian transitions (here seen as the binary
potentials, ).

To solve this problem we define the recursive ¢ func-
tion as follows. First, we randomly sample a path through
the signal graph. Then, for this path define

0i(@) =  max
L1,T2, ", Ti—1

P(z1,29,+ ,2i-1,2; = Sq)

where we index the nodes in the path by variable ¢ and the
nodes to which they map by variable «. This can be solved
by induction,

diy1(8) = max [0i (@) (i = Sa, Tit1 = 58)]
X(zit1 = sp)
where we must keep track of the maximizing arguments
in each step, via a variable . The complete algorithm is
a Viterbi-like algorithm [11], and read as follows:
Initialization
Forl <a <S8,
61(a) = ¢(x1 = 84)
51 (Oé) =0
Recursion
For2<:<T,1<p3<S§S,
51(@ = mMaxXq [5i—1((1)¢(-75i = Sa, Ti+1 = 95)]
XP(Tit1 = sp)
&(B) = argmaxy[0; 1 () (x; = Sa, Tit1 = 5p)]
Termination
p* = max,[dr ()]
sk = argmax,[or(a)]
Reconstruction
Fori=T-1,T—2,...,1,
s;=&iv1(s74q)
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This result is approximately independent of the path cho-
sen but variations can be due to the rounding errors of dif-
ferent lists of MAP values. However, in principle, these re-
sults should be similar as the algorithm is based on a non-
stationary dynamic programming model where all lists are
based on local unary and binary computations. For this rea-
son the algorithm is a generalization of the classical Viterbi
algorithm that assumes a stationary hidden Markov model
to compute MAP lists.

4.2. Junction Tree Models

The Junction Tree framework [8] comprises a set of al-
gorithms that allows exact inference in arbitrary graphical
models, though the feasibility of its usage depends on the
complexity of these models (specifically, on the size of the
maximal clique of the graph after its triangulation).

A Junction Tree is a graph where the nodes correspond
to the maximal cliques (we call here “clique nodes”) of the
underlying HMRF and such that the junction tree property
is satisfied. This property merely states that all the clique
nodes in a path between two given clique nodes must con-
tain their intersection (the singleton nodes of the original
HMREF that are in both clique nodes). It is known that the
condition for the existence of a Junction Tree is that the
graph must be triangulated [6].

Here, we propose two HMRF models and apply the
Hugin algorithm [8], an instance of the Junction Tree frame-
work, for accomplishing exact inference.

Figure 3 shows the “tetragram” model (JT4) and its re-
spective Junction Tree. The “trigram” model (JT3) is anal-
ogous, but the hidden node cliques are of size three, instead
of four, and the connections between nodes x; and x; 3 in
Figure 3(a) are not present. Note, in Figure 3(b), that the
Junction Tree property is satisfied, once all paths from any
node to any other contains the intersection of these nodes.
Note also that there are separators between neighbor nodes,
which we denote with rectangles. These separators include
the set of singleton nodes that are common to both clique
nodes, and are introduced in order to apply the Hugin algo-
rithm.

The Hugin algorithm essentially works in two steps: ini-
tialization and message-passing. During the initializa-
tion, the potential of each separator is set to unity and
the potential of each clique is introduced. In our partic-
ular case, the hidden clique potentials are products of
the pairwise potentials that embodies the 4-size clique.
So, the potential t(x;,x;,x, ;) is actually given by
(s, 25) (@i, o) (@, x) (2, o) Y(X), 2)Y (@), 1),
but each pairwise potential must be included just once, so,
actually, this product involves these six factors just for a sin-
gle clique node, and it is not difficult to see that there are
just three factors for the others. The evidence poten-

Figure 3. (a) A tetragram model and (b) a cor-
responding Junction Tree.

tials &(y;,x;) are simply obtained as shown in section 2.
The second step is the message-passing scheme, which in-
volves a transfer of information between two nodes V' and
W [6]. This operation is defined by the following equa-
tions:

L = v 4

5 rg@( v )
@*

Uy, = qf Uy ®)
S

where we used standard notation for the current and up-
dated (*) versions of the separator potentials () and the
clique potentials (). The first equation is a maximization
over all sub-configurations in Wy that do not involve the
singleton nodes which are common to & and Wy, . The sec-
ond is simply a normalization step necessary to keep Wy
consistent with the updated version of ®g. The above poten-
tial update rules must respect the following protocol: a node
V' can only send a message to a node W when it has already
received messages from all its other neighbors. If this proto-
col is respected and the equations are applied until all clique
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nodes have been updated, the algorithm assures that the re-
sulting potential in each node and separator is equal to the
maximum a posteriori probability distribution of the set of
enclosed singleton nodes [6]. In our particular case, we need
the maximum probability for each singleton, that can be ob-
tained by observing the index that maximizes the final po-
tential of the separators that contain a single node (see sep-
arators X; in Figure 3(b)).

5. Experiments

We have compared the performances of PRL, SPDP, JT3
and JT4 in a set of experiments. The underlying HMRF for
PRL was set as the fully connected graph, so that the al-
gorithm could take advantage of all the binary information
available. The experiments consisted of matching straight
line segment (SLS) vector graphs. The “template” vector
graph consists of a series of SLSs generated according
to normal distributions of length, angle and position. The
“scene”, or “signal plus noise” vector graph contains the
template vector graph and a set of noisy SLSs also gener-
ated from controlled normal distributions for length, angle
and position. The unary feature used was the length, and the
binary features used were (i) relative angle, (ii) relative dis-
tance of centroids, (iii) relative maximal distance and (iv)
relative minimal distance between extremal points of the
SLSs [13]. These features are translational and rotational
invariant.

In order to access the performances of the four methods,
we accomplished two sets of experiments. The first con-
sists in studying the stability of the results when increasing
the amount of noisy SLSs. We have used a template of 10
SLSs and evaluated the correct assignment performance for
ascene with 5, 10, 15, 20 and 25 noisy SLSs, thus running a
set of 5 experiments, (10,15), (10,20), (10,25), (10,30) and
(10,35), where (T',S) denotes an experiment with 7" SLSs in
the template and S SLSs in the scene. Figure 4(a) shows the
performance for 1000 trials of each of these experiments.

The second experiment was carried out aimed at address-
ing the performance of the four methods when the template
pattern, itself, is perturbed in some way. We kept constant
the amount of SLSs in the template and the scene (10 in the
template and 20 in the scene), but perturbed each SLS con-
tained in the template instance in the scene. Each of their
extremal points was shifted, both in = and y coordinates,
by a random number drawn from a normal distribution with
zero mean and varying standard deviation - given, in pix-
els, in the x axis in Figure 4(b).

For the purpose of evaluating the algorithms in a real sit-
uation, we applied them to the problem of matching aerial
images of the same region taken from different views. We
present here a single example, so our aim is not to claim
generality, but just to illustrate how the system works in

Correct assignment rate

5 10 15 20 25
Number of noisy elements in the scene

(@)

Y
S0
A ¥89
hoid
i i

Correct Assignment rate

~o- T4 2
-0~ JT3

-o- SPDP
-+ PRL

(] 05 1 15 2 25 3 35 4 45 5

Intrinsic perturbation in the template (in pixels)

(b)

Figure 4. Performances of the Junction Tree
tetragram model (JT4), Junction Tree trigram
model (JT3), single path dynamic program-
ming (SPDP) and Probabilistic Relaxation La-
beling (PRL). (a) Performance variation ac-
cording to the task complexity (number of
noisy SLSs or extrinsic noise); (b) Perfor-
mance variation according to degree of per-
turbation in the query template (standard de-
viation, in pixels, or intrinsic noise).

practice. In the particular example to be shown, the amount
of SLSs in both the template and scene graphs is similar,
what is common in applications such as stereo matching.
However, this may not be the case in general, when fre-
quently the template is much smaller than the scene. Fig-
ure 5(a) shows two different aerial views of the same re-
gion, where some landmark lines summarizing its content
were extracted using a set of Gabor filter banks in multi-
ple scales and orientations (Figure 5(b)).

We applied PRL, SPDP, JT3 and JT4 to this problem. We
defined the HMREF over the left image in Figure 5(b), so that
the states assumed by the nodes (SLSs of this image) corre-
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Figure 5. (a) Left: first aerial view. Right: sec-
ond aerial view (b) Left: extracted lines of first
aerial view. Right: extracted lines of second
aerial view.

spond to the SLSs in the right image in the figure. We ob-
tained the following mapping results:

e PRL:(a,3) (b,2) (c,2) (d4) (e,4) (£5) (2,6) (h,7) (i.4)
(G:27) (k,10) (1L,11) (m,10) (n,13) (0,15) (p.15) (q,16)
t,17) (5,18) (4,18) (u,20) (v,10) (W,21) (x,22) (y,23)
(2,24) (aa,21) (ab,28) (ac,28) (ad,17).

e SPDP: (a,1) (b,2) (c,2) (d,4) (e,4) (£,5) (g,6) (h,7) (1,6)
(G,9) k,10) (1,13) (m,12) (n,13) (0,14) (p,14) (q,16)
(r,16) (s,18) (t,19) (u,19) (v,17) (W,21) (x,22) (y,23)
(z,24) (aa,22) (ab,27) (ac,28) (ad,17).

e JT3: (a,1) (b.2) (c,2) (d4) (e.4) (£5) (g.6) (h,7) (i,8)
(G,9) k,10) (1,10) (m,12) (n,13) (0,14) (p,15) (q.16)
(1,18) (s,18) (t,19) (u,20) (v,13) (w,21) (x,22) (y,27)
(z,24) (aa,22) (ab,27) (ac,28) (ad,15).

e JT4: (a,1) (b,2) (c,2) (d,4) (e,4) (£5) (g.,6) (h,6) (1,8)
G,9) (k,10) (1,13) (m,12) (n,13) (0,14) (p,15) (q,16)
(1,16) (s,18) (t,19) (u,20) (v,10) (w,21) (x,22) (y,23)
(z,24) (aa,22) (ab,27) (ac,28) (ad,15).

By inspection we can verify that in this particular case PRL
was outperformed by the other three models, and JT3 and
JT4 exhibited the best performance, though both made some
mistakes. Note that the feature extraction process generated
a significant amount of noise, since for example we can see
that there are SLSs in one image that do not appear in the

other, or even that some SLSs in one image have been de-
tected as being two SLSs in the other.

6. Results and Discussion

Figure 4(a) shows that when the task complexity in-
creases (when the number of noisy patterns added to the
scene image grows) the performance of PRL is severely af-
fected, while that of the proposed models remain fairly ro-
bust. This is an important result, since in real applications,
such as road detection in aerial images, the scene may be
full of patterns, frequently in amounts orders of magnitude
greater than those of the template itself. This result agrees
with previous results in the literature, which have shown
that PRL performance is sensitive to complex attributed
graph matching problems [4].

Similarly, at least one of our models (JT4) presents bet-
ter performance when compared to PRL for addition of in-
trinsic noise in the template pattern embedded in the scene,
as Figure 4(b) shows. This is almost always the case in in-
exact attributed graph matching when the feature extraction
process introduces noise in the measured attributes, mak-
ing the matching algorithm sensitive to the degree of dis-
tortion. This fact leads us to conclude that robustness with
respect to intrinsic noise is very important in matching ap-
plications which reinforces the viability of the models pro-
posed in this paper.

As a final remark, it is important to compare the compu-
tational complexity of the different techniques. PRL, SPDP,
JT3 and JT4 are, respectively, O(S3T2), O(S?T), O(S3T)
and O(S*T). Here we can see that JT3, which outperforms
PRL in robustness to extrinsic noise and has practically the
same overall robustness to intrinsic noise, is cheaper. Also
JT4, which clearly outperforms PRL in both situations, is
S/T times more expensive than PRL, which in the exam-
ple in Figure 5 corresponds to a factor of practically 1, like
in stereo matching. In other applications, where S >> T,
we may have to pay additional computational power in or-
der to acquire more robustness by using JT4.

These computational complexity results, together with
the evidence obtained from the reported experiments, en-
courage us to believe that the ideas presented in this paper
may suggest a feasible foundation for providing more prin-
cipled treatments, as well as more accurate techniques, for
probabilistic optimization approaches to attributed graph
matching.

7. Conclusions

We have formulated attributed graph matching as an op-
timization problem in a HMRF. We have also examined
different types of HMRF models for the attributed graph
matching problem, and compared their performance with
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the standard technique of Probabilistic Relaxation Label- [13] P.N. Suganthan. Structural pattern recognition using genetic

ing. The fundamental idea behind our proposal is that ac- algorithms. Pattern Recognition, 35:1883-1893, 2002.
complishing exact inference in approximate models may be [14] M. A. van Wyk, T. S. Durrani, and B. J. van Wyk. A rkhs
a better alternative to performing approximate optimization interpolator-based graph matching algorithm. IEEE:PAMI,
in complete models when there is redundancy of binary at- 24(7):988-995, 2002.

tributes. Indeed, the PRL approach can take advantage of
using all the binary attributes available, in the sense that
the graph underling the process can be the fully connected
graph. However, due to its local optimization characteris-
tics, the results, even with all the binary information made
explicit, have shown to be poorer than those obtained with
some of the models proposed, which do not use the entire
explicit information available, but assure a solution which
is a global optimum for the given approximated model.
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