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Abstract. We present a probabilistic graphical model for point set
matching. By using a result about the redundancy of the pairwise dis-
tances in a point set, we represent the binary relations over a simple
triangulated graph that retains the same informational content as the
complete graph. The maximal clique size of this resultant graph is inde-
pendent of the point set sizes, what enables us to perform exact inference
in polynomial time with a Junction Tree algorithm. The resulting tech-
nique is optimal in the Maximum a Posteriori sense. Experiments show
that the algorithm significantly outperforms standard probabilistic re-
laxation labeling.

1 Introduction

The Point Matching Problem is a fundamental one in structural Pattern Recog-
nition, having many applications ranging from stereo matching techniques [4] to
the analysis of electrophoresis images [3].

Many algorithms are available in the literature, both for exact and inexact
matching. For exact matching, optimal polynomial time algorithms exist, most
of them based on ingenious combinations of sorting and searching, inclusive for
multidimensional point matching [11]. For inexact matching, there is a variety of
proposed techniques, which are generally significantly different from exact tech-
niques, since the need for a similarity measure usually requires that the problem
be posed as an optimization one instead of (or in addition to) deterministic
search [2].

This paper presents a principled approach for point set matching which is
both applicable to exact and inexact problems. Moreover, it is assured to be op-
timal in the Maximum a Posteriori sense and has polynomial time dependency
on the point set sizes. This is possible due to the proposed Markov Random
Field (MRF) formulation, which poses point set matching as an exact infer-
ence problem that can be effectively solved by Junction Tree methods [7]. The



polynomial time performance is obtained from a key observation which exploits
concepts of the rigidity of straight line graph embeddings [12, 13]. We also show
via a series of experiments that the proposed technique, when applied to inex-
act problems, presents extremely robust performance under augmentation of the
point set sizes. In addition, experiments indicate that the proposed approach is
significantly more robust than standard probabilistic relaxation labeling both
under varying point set sizes and varying noise levels.

2 The Problem

We consider the problem in Rd, d ≥ 2, of finding the subset of an S-sized point
set (the codomain pattern) that best matches another point set (the domain
pattern) having T points, where T ≤ S. There may or may not exist distortions
due to noise, but if there are, we assume no prior knowledge of the type of noise.
We restrict the matching to be invariant up to isometries. In this work, the scale
of both point sets is assumed to be the same. The only constraint enforced in the
mapping is that it must be a total function: every point in the domain pattern
must map to one point in the codomain pattern (but the opposite may not hold).

3 Theoretical Foundation

This section presents the fundamental result that enabled us to formulate the
point set matching problem as one of optimal inference in a MRF, while keeping
the overall complexity of the algorithm polynomial.

3.1 Global Rigidity: Basic Definitions

We start by presenting some basic definitions of the global rigidity of graphs
[12]. A configuration is a finite set of n labeled points, p = (p1, · · · , pn), such
that each pi ∈ Rd. A framework in Rd consists of a straight line embedding of a
graph G with n vertices with configuration p = (p1, · · · , pn), and is denoted by
G(p). In this representation the lengths of the edges correspond to the Euclidean
distances between the corresponding vertices. A configuration in general position
(or general configuration) in Rd is such that no (d+1) points lie in the same (d-
1)-dimensional hyperplane. In R2, this means that no 3 points are collinear.

Two frameworks G(p) and G(q) are said to be equivalent, denoted by G(p) ≡
G(q), if when {i, j} is an edge of G, then ||pi − pj || = ||qi − qj ||, where ||.|| is
the Euclidean norm. It is said that a configuration p = (p1, · · · , pn) is congruent
to q = (q1, · · · , qn), and are denoted by p ≡ q, if, for all {i, j} ∈ {1, · · · , n},
||pi− pj || = ||qi− qj ||. This is equivalent to saying that congruent configurations
are those related by an isometry, or a transformation that preserves distances.
A framework G(p) is called globally rigid in Rd if G(p) ≡ G(q) implies p ≡ q.
In other words, a framework is globally rigid when the specification of the edge
lengths uniquely specifies the remaining pairwise distances between vertices that



are not joined by an edge. In the following we present a key fact about the
global rigidity of a special kind of framework, which turns out to allow for the
development of an effective technique for point matching.

3.2 Global Rigidity of k-trees

In order to present the basic result that allows us to develop a model for optimal
point matching, we start by reviewing some basic definitions from graph theory
[14]. In what follows a complete graph with n vertices is denoted as Kn. We
recall that a framework is a straight line embedding of a graph.

Definition 1 (k-clique). A k-clique of a graph is a complete subgraph with k
vertices.

Definition 2 (k-tree, base k-clique). A k-tree is a graph that arises from
Kk by zero or more iterations of adding a new vertex adjacent to each vertex
of a k-clique in an older graph and nonadjacent to the remaining vertices. The
k-cliques adjacent to the new vertices are called base k-cliques.

Figure 1 shows the process of creating a k-tree, where k = 3. We start with a
K3 graph. Then we add new vertices by connecting them to 3 vertices of any
existing base 3-clique. Note that all intermediate graphs generated in this way
are themselves legitimate 3-trees.
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Fig. 1. The process of constructing 3-trees

From these definitions and those of the global rigidity of frameworks, it is possible
to prove the following result:

Proposition 1. Any k-tree framework having each of its base k-cliques in gen-
eral position in Rk−1 is globally rigid in Rk−1.

This follows from the fact that n + 1 hyper-spheres in Rn which do not lie
in a (n − 1)-dimensional vector subspace intersect in at most one point. The
proof is omitted for space reasons, but can be obtained by induction using the
known fact that the intersection of two spheres is a sphere in a lower dimensional
subspace.



The direct implication of the result is that the k-tree framework has exactly
the same informational content than a fully connected framework (since the
absent edges have uniquely determined lengths).

In the next section we show how, by taking advantage of this result, we can
formulate a MRF model that has precisely the structure of a k-tree, and where
exact probabilistic inference is feasible in polynomial time.

4 The Probabilistic Graphical Model

A direct consequence of the definition of a k-tree is that the size of its maximal
clique is at most k + 1, being precisely k + 1 if the number of vertices is greater
than k and being k if the number of vertices equals k.

This observation is what impelled us to propose a probabilistic formulation
based on Graphical Models [6], which involves algorithms for optimal inference
in probabilistic networks with exponential complexity on the size of the maximal
clique of the underlying graph. Since the size of the maximal clique is fixed in
k + 1, the dependency on the number of points is only polynomial, as will be
shown. As a result, we obtain a polynomial time procedure for optimal matching.
The description of the model and the optimization procedure follow.

4.1 The Model

Here we present a probabilistic graphical model for point set matching. The
cardinalities of the domain and codomain pattern sets are denoted, respectively,
by T and S. Each point in the domain is associated with a vertex of a graph
Gt, and each point in the codomain is associated with a vertex of a graph Gs.
The relative distance between a pair {i, j} of points in a pattern is seen as an
edge attribute of the edge that connects vertices i and j in the respective graph.
In this formulation, point pattern matching turns out to be an attributed graph
matching problem.

The model formulation consists, initially, in defining each of the T vertices
in Gt as a random variable (r.v.) that can assume S possible values (discrete
states), corresponding to the vertices in Gs. Note that in this formulation the
solution to the problem (the best match) corresponds to finding the most likely
(the best) realization of the set of r.v.’s. The core of a Markov clique condition
lies in the compatibilities between joint matches of two r.v.’s xi and xj in Gt to
values θk and θl in Gs and is defined by

ψij;kl = p(xi = θk|xj = θl)

or, in matrix form, for each pair {i, j} in Gt, we define the potential

ψij = ψ(xi, xj) ≡ p(xi|xj) =
1
Z
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where ybc
a denotes the edge attribute between vertices b and c in graph Ga. Z

is a normalization constant that equals the sum of all elements in the matrix,
in order to keep ψij compatible with a probability distribution. S is a similarity
function that measures the compatibility of the two arguments. Several options
are available for S [1], and the specific function S to be used is not a central
issue of this work. Here we choose a similarity function based on the Hyperbolic
Tangent, for which there is evidence of better performance over a Gaussian
function [1]:

S(yij
t , y

kl
t ) = 1− tanh

[
|yij

t − ykl
s |

σ

]
. (2)

As a result we can now define a Markov Random Field (MRF) graphical model
over the domain graph Gt where nodes in the model correspond to the vertices
in Gt whose states are defined by discrete random variables given by the set of
vertices in Gs. The local cliques are defined by the connections between the r.v.’s
of the k-tree topology and their conditional dependencies (Markov condition) are
defined via Eq.(1).

Since we have shown that considering only this subset of edges is equivalent to
considering all the edges, this MRF actually represents a complete model of the
probabilistic interactions in the graph. Figure 2 shows an example of a particular
3-tree MRF. The result of section 3 implies that this model is equivalent to a
complete model for matching tasks in R2, where our experiments will take place.
Each connection represents the interaction between the corresponding random
variables, which is given by the associated “potential” ψij .
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Fig. 2. A possible k-tree model for k = 3 (3-tree). Other 3-trees are possible, as long
as their base 3-cliques correspond to non-collinear points.

Now we need an optimization procedure to infer the most likely realization of the
set of random variables, which is precisely the solution to the point set matching
problem.

4.2 Optimization

Inference in MRFs typically capitalizes on the Gibbs’ distribution to employ
simulated annealing to derive the assignment [10]. However, with the above
results we can use the Junction Tree (JT) framework, which provides a set of



deterministic algorithms for exact inference in arbitrary graphical models [7, 6].
A JT of a graph is another graph where the nodes correspond to the maximal
cliques of the former graph such that the Junction Tree property is satisfied.
This property states that all the nodes in the path between any two nodes in
the JT must contain the intersection of these two nodes. It is known that the
condition for the existence of a JT is that the graph must be chordal [6]. A
k-tree is a chordal graph, and this allows us to use the JT framework to perform
optimization over the model.
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X 3X1 X2
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Fig. 3. The Junction Tree obtained from the model in Figure 2.

Figure 3 shows a JT obtained from the model in Figure 2. The nodes of the
JT are denoted by circles in which are listed the nodes of the original graph that
correspond to the respective maximal cliques. The rectangles are the so-called
separators, that contain the intersection of the nodes to which they are linked.
Both the nodes and the separators are endowed with “clique potentials”, and the
optimization process consists in updating these potentials, as explained below.
In this paper we applied the HUGIN algorithm [6], an instance of the JT frame-
work, to accomplish exact inference in the 3-tree model shown in Figure 2. The
complexity of JT using HUGIN in our k-tree model is O(Sd+2T ), where d (d > 1,
d = k − 1) is the dimension of the Euclidean space. As a result, the complexity
on S and T is polynomial. For the model and experiments presented here (in
R2), we have O(S4T ). The HUGIN algorithm essentially works in two steps:
initialization and message-passing. During the initialization, the clique potential
of each separator (Φ) is set to unity and the clique potential of each node (Ψ)
is introduced. These clique potentials are assembled as an element-by-element
product of the pairwise potentials (see Eq. 1) in the respective clique. For ex-
ample, for the 3-tree model, Ψ(xi, xj , xk, xl) = ψ(xi, xj).ψ(xi, xk).ψ(xi, xl).

The second step is the message-passing scheme, which involves a transfer of
information between two nodes V and W [7]. This operation is defined by the
following equations:

Φ∗S = max
V \S

ΨV Ψ∗W =
Φ∗S
ΦS

ΨW



where we used standard notation for the current and updated (∗) versions of the
separator potentials (Φ) and the clique potentials (Ψ). The first equation is a
maximization over all sub-configurations in ΨV that do not involve the singleton
nodes which are common to ΦS and ΨV . The second is simply a normalization
step necessary to keep ΨW consistent with the updated version of ΦS (division
and multiplication are performed element-by-element). The above potential up-
date rules must respect the following protocol: a node V can only send a message
to a node W when it has already received messages from all its other neighbors.
If this protocol is respected and the equations are applied until all clique nodes
have been updated, the algorithm assures that the resulting potential in each
node and separator of the JT is equal to the (global) maximum a posteriori prob-
ability distribution of the set of enclosed singleton nodes [7]. In our particular
case, we need the maximum probability for each singleton, what can be obtained
by maximizing out the remaining 3 singletons in each of the nodes. The indexes
for which the final potentials are maximum are considered the vertices in Gs to
which the corresponding vertices in Gt must be assigned.

5 Experiments and Results

We have carried out two experiments. In both of them, we compare our technique
(denoted simply as JT) with probabilistic relaxation labeling (PRL) [8]. We
have implemented the standard algorithm for PRL presented in [9], for the same
reasons than those explained in [5]. PRL does not guarantee global optimal
assignments like, under the right conditions and enough iterations, simulated
annealing does [10]. However, it is representative of the class of methods that
locally update evidence, in parallel, for assignment in terms of the compatibilities
between the label of each node and those within its neighborhood. The algorithm
runs in O(S3T 2).

In both experiments, we generated codomain patterns in images of size
256x256 with S points at random (but not coincident) positions. Then, we ex-
tracted randomly a subset of T of these points to build the domain pattern.

In the first experiment, we assume that there is a small amount of noise
(position jitter) in the codomain pattern, and vary the size of the codomain
pattern (in the absence of noise - when the domain pattern is exactly related
via an isometry to a subset of the codomain pattern - our method always gives
perfect results). A set of 8 increasingly complex matching tasks were carried
out, where patterns of size (T ,S) = {(10, 15), (10, 20), (10, 25), (10, 30), (10, 35),
(10, 40), (10, 45), (10, 50)} were matched using both JT and PRL. For each of
these matching tasks, the fraction of correct assignment was calculated based on
1000 trials. The obtained performances are shown in Figure 4(a).

In the second experiment, the sizes of both graphs are kept constant, but
the degree of noise in the codomain pattern is increased. We used T = 10
and S = 30, and the noise consisted in adding independent random numbers
drawn from a normal distribution with zero mean and varying standard devi-
ation (denoted as std in the figures) to both the x and y coordinates of each
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Fig. 4. (a) Performances of JT and PRL when the size of the codomain pattern (S) is
increased; T = 10, std (noise jitter) = 2 pixels. (b) Performances of JT and PRL when
the position jitter (std) in the codomain pattern is increased; T = 10, S = 30.

point from the codomain pattern. The standard deviation was progressively set
to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} pixels. The final performance is presented in Figure
4(b). Each point in this Figure also represents the result over 1000 trials. The
only parameter in the model is σ (see Eq. 2), and it was estimated so that the
minimal possible value for S(yij

t , y
kl
s ) was 10−12. This is done to prevent under-

flow and also to guarantee that the similarity function S will effectively behave
monotonically with the observed value of |yij

t − ykl
s |.

6 Discussion

Figure 4(a) shows that, for a fixed amount of noise, the augmentation of the
codomain pattern size damages severely the performance of PRL, whereas that
of JT remains significantly robust. This is a very important result, since scal-
ability is an important factor in real applications such as stereo matching and
image registration. The sensitivity of PRL to matching problems involving many
elements has already been reported [5].

In Figure 4(b), we observe that, for fixed sizes of the domain and codomain
patterns, the increasing of additive noise still keeps JT preferable for all the
experimented values of noise. It is reasonable to expect that both techniques
will perform similarly for extremely severe perturbations, when the performance
cannot exceed significantly that of pure choice.

7 Conclusion

This work has presented a novel technique for both exact and inexact point pat-
tern matching in Rk−1 (k ≥ 3), which runs in polynomial time and is optimal



in the Maximum a Posteriori sense. By representing a point pattern with the
correspondent relative pairwise distances between them, we showed that a sub-
set of these distances is sufficient for uniquely determining the remaining ones.
From this result, a special class of graph emerges, a k-tree, which has the same
representational power as the full graph, but has a maximal clique limited to
size k+1. By exploiting the Markovian properties of this simple graph structure
which has a fixed maximal clique size, we developed a probabilistic graphical
model where optimal inference is realizable in polynomial time. The proposed
technique presents perfect results in the absence of noise, and is much more ro-
bust than standard probabilistic relaxation labeling to varying point set sizes
when under noise. The technique is also robust under augmentation of additive
noise, where it clearly outperforms standard probabilistic relaxation labeling.
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